```
TOP_mod.use_x = False
               MITHROS A.
lrror_mod.use_y = True
irror_mod.use_z = False
 operation == "MIRROR_Z":
  rror_mod.use_x = False
 rror_mod.use_y = False
 rror mod.use z = True
 election at the end -add
  ob.select= 1
  er_ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modifier
  irror_ob.select = 0
 bpy.context.selected_obj
  ata.objects[one.name].se
 int("please select exaction
  -- OPERATOR CLASSES ----
```

INTRODUCTION AL PYCPT

Bch. Javier Chiong Ravina

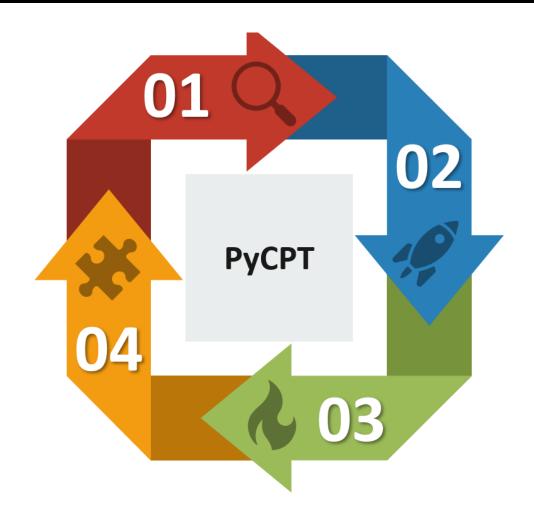
ontext):
ontext.active_object is not

PyCPT

 PyCPT es una biblioteca de Python que proporciona una interfaz y funcionalidades adicionales a la herramienta de predicción climática (CPT) de IRI, con un enfoque especial en la producción en masa de mapas de evaluación de habilidades de pronóstico estacional y subestacional y pronósticos probabilísticos flexibles.

Estructura de los scripts del PyCPT

Configuración del Caso

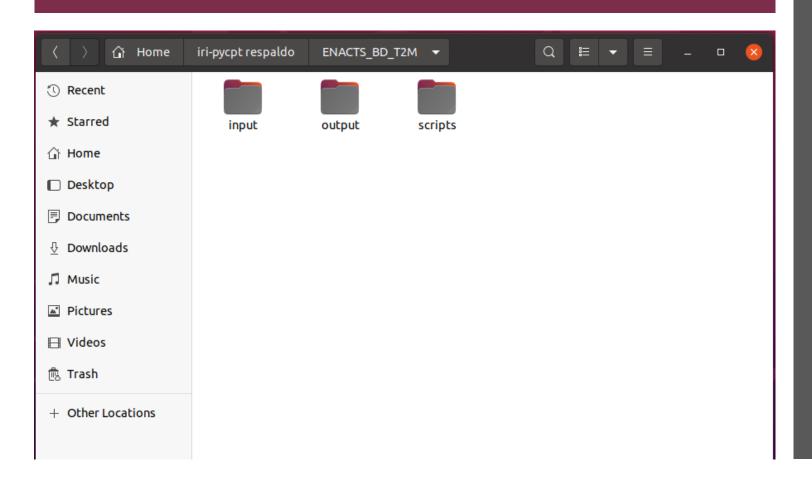


En esta sección se define los predictores, predictandos, métodos de calibración, dominios espaciales y temporales, entre otros parámetros.

Producción de pronóstico

Esta sección de pronóstico se ocupa de la generación y producción de conjuntos de mapas de pronóstico y otras figuras.

Descarga de datos y ejecución del CPT


Esta sección consiste en descargar y preparar los datos iniciales para luego ejecutar el CPT y generar archivos y datos de pronóstico para realizar el proceso de calibración seleccionado por el usuario.

Pronóstico de evaluación de skill

La sección de evaluación de skill visualiza métricas de habilidades predictivas como mapas o texto. Medidas de habilidad como Pearson, puntajes ROC, Spearman, etc.

DIRECTORIOS IMPORTANTES QUE SE VAN A GENERAR AL EJECUTAR EL PyCPT

- Entrada: este es el directorio que contiene los datos descargados: datos del modelo, pronóstico y observación. Los archivos de datos tienen formato .tsv.
- Salida: este directorio contiene los archivos de texto de salida (utilizados en el pronóstico objetivo), archivos ctl y dat (salida del procesamiento CPT).
 - Figuras: este directorio contiene todos los mapas de salida (pronóstico (probabilístico y determinista), skill y formato flexible).
- Scripts: este directorio contiene archivos de registro CPT. Ayuda a rastrear dónde ocurrió el error si falla el procesamiento CPT. También contiene archivos de trabajo CPT.

```
Namelist section
In [1]: ######Work name (name of the work folder; e.g., one word followed by " seasonal":)
                        work='ENACTS BD T2M'
                        ######Model (choose one, a subset or all models:
                        #CanSIPSv2*, CMC1-CanCM3, CMC2-CanCM4, COLA-RSMAS-CCSM3, COLA-RSMAS-CCSM4*,
                        #GFDL-CM2p1, GFDL-CM2p5-FLOR-A06*, GFDL-CM2p5-FLOR-B01*, NASA-GEOSS2S*, NCAR-CESM1, NCEP-CFSv2*
                        #The ones with "*" are producing operation#al forecasts, the others are frozen.
                        #CanSIPSv2 forecasts are ONLY AVAILABLE after Aug 2019!!!!
                       #EU(for 2020 forecast)=['EU-C3S-UKMO-GloSea5GC2S15', 'EU-C3S-DWD-GCFS2p0', 'EU-C3S-CMCC-SPS3']
                        #NMME models=['CanSIPSv2','COLA-RSMAS-CCSM4','NASA-GEOSS2S','NCEP-CFSv2']
                        #EU models=['EU-C3S-ECMWF-SEAS5', 'EU-C3S-MeteoFrance-System7', 'EU-C3S-UKMO-GloSea6GC2S600', 'EU-C3S-UKMO-GloSea6GC2S60', 'EU-C3S-UKMO-GloSea6GC2S60', 'EU-C3S-UKMO-GloSea6GC2S60', 'EU-C3S-UKMO-GloSea6GC2S60', 'EU-C3S-UKMO-GloSea6GC2S60', 'EU-C3S-UKMO-GICSAUCMO', 'EU-C3S-UKMO-GICSAUCMO', 'EU-C3S-UKMO-GICSAUCMO', 'EU-C3S-UKMO-GICSAUCMO', 'EU-C3S-UKMO', 'EU-C3S-UKMO-GICSAUCMO', 'EU-C3S-UKMO', 'E
                        #models=['NCEP-CFSv2','CanSIPSv2']
                       models=['NCEP-CFSv2','NASA-GEOSS2S']
                        #######Obs (choose between CPC-CMAP-URD, CHIRPS, TRMM, CPC, Chilestations)
                        obs='ENACTS-BD'
                        station=False
                        ######MOS method (choose between None, PCR, CCA)
                        #MOS= 'CCA'
                        #MOS- 'DCR'
                        MOS='None'
                         #######Predictand (choose between PRCP, RFREQ)
                        PREDICTAND= 'TMFAN'
```

Paso 1: Crear el nombre de mi directorio en donde se van a almacenar mis carpetas de entrada, salida, scripts y figuras.

Paso 2: Elegir mis modelos numéricos de los cuales se va a tomar los datos de los predictores.

Paso 3: Elegir mi fuente de datos observados de los cuales se van a tomar los datos de los predictandos.

Paso 4: Elegir el "model output statistic" entre CCA, PCA (análisis de correlación canónica y regression de components principales) y None (ningún método).

Paso 5: Elegir la variable del predictando.

```
######Predictor (choose between GCM's PRCP, VQ, UQ)
#VO and UO only works with models=['NCEP-CFSv2']
PREDICTOR='T2M'
pressure='850' # UQ VQ: for desired horizontal moisture fluxes in the U (Zonal) and V (Meridional) di
#(Tip: change your work foldername after changing the pressure)
#PREDICTOR='T2M'
#######Target seasons and related parameters
##If more targets, increase the arrays accordingly
mons =['Jun']
#mons=['Dec']
tgtii=['1.5'] #S: start for the DL
tgtff=['3.5'] #S: end for the DL
#tgt::=| 1.5 , 2.5 | #S: start for the DL
#tgtff=['1.5','2.5'] #S: end for the DL
#tgtii=['1.5','2.5'] #S: start for the DL
#tatii='1.5' #S: start for the DL
#tatff='3.5' #S: end for the DL
#for now, just write the target period (for DL)
tgts =['Jul-Sep'] #'Aug-Oct','Mar-May','Apr-Jun','May-Jul'] #Needs to be any of the seasons computed
monss = tgts
#tqts=|`Jan`,`Feb`
#tgts =['Jan-Mar']
#Start and end of the training period: (must be >1982 for NMME models. Because of CanSIPSv2, probably
tini=1993
tend=2016
```

Paso 6: Elegir la variable del predictor

Paso 7: Elegir mes de inicialización.

Paso 8: Establecer el Data Library Index (índice de la biblioteca de datos) para el primer y último mes de la temporada objetivo.

Paso 9: Indique las temporadas objetivo correspondientes a las temporadas en el Paso 8.

Paso 10: Establezca el período de entrenamiento.

```
######Forecast date
monf='Jun'→# Initialization month
tyr=2021---># Forecast year
#######Switches:
force download = False #force download of data files, even if they already exist
single models = True
                        #Switch Single model plots on or off
cca timeseries = False #Switch to plot cca time series or not (this function is
# #######Spatial domain for predictor
nla1=35 ----# Northernmost latitude
sla1=15 -----## Southernmost latitude
wlo1=80 ──## Westernmost longitude
elo1=100 → # Easternmost longitude
# Snatial domain for predictand
nla2=28 — # Northernmost latitude
sla2=20 -----## Southernmost Latitude
wlo2=87 ──*# Westernmost longitude
elo2=94 -----# Easternmost longitude
```

Paso 11: Elegir el mes del pronóstico

Paso 12: Elegir el año del pronóstico

Paso 13: Definir los dominios espaciales del predictor.

Paso 14: Definir los dominios espaciales del predictando.

```
In [2]: #######Some folder and file options:
        # Working directory --it should exist!!!
        #workdir = '/mnt/c/Users/Patri/OneDrive/Columbia Academics/S2S
        workdir = '/Users/kjhall/Projects/iri-pycpt/'
        #workdir = '/home/cli/iri-pycpt23-git/'
        savedir = workdir # location in which the current .ipynb is
        # PATH to CPT root directory
        #cptdir='/mnt/c/Users/Patri/Downloads/CPT/16.5.8/'
        cptdir='/Users/kjhall/CPT/16.5.8/'
        #cptdir='/software/rhel8/x86 64/CPT/16.5.8/bin/'
        #workdir = '/home/cli/iri-pycpt3-git/'
        # PATH to CPT root directory
        #cptdir='/Users/agmunoz/Documents/Angel/CPT/CPT/16.2.4/'
        #cptdir='/software/centos7/x86 64/CPT/16.5.4/bin/'
        print("PyCPT folder is:")
        %cd $workdir
        !mkdir -p $work
```

Paso 15: Elegir el directorio de trabajo.

Paso 16: Elegir el directorio en donde se encuentra nuestra version del CPT.