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1964: CISK 1982:Balanced dynamics 1986: WISHE 

Classic views on TC intensification

All are qualitative descriptions – Emphasize a certain positive feedback process 
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Classic views on TC intensification
Balanced vortex dynamics
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Classic views on TC intensification
Ø Classic views: Qualitative descriptions of certain positive feedback processes 

       (CISK, WISHE, balanced dynamics)

Ø New efforts: To quantify TC intensification rate by developing physically/dynamically 
     based time-dependent theories (equations)

Ø Significance: 
– A theoretical basis for understanding climate change impact on TC intensification,                     

similar to MPI theory on TC intensity. 
– Potential applications to TC intensity forecasting.
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Early efforts toward time-dependent theories

l Dynamically based time-dependent theory (Emanuel 2012)

Slab boundary layer entropy & momentum budget equations 
  + 

Moist neutral eyewall convection (ascent)

l Energetically based time-dependent theory (Ozawa & Shimokawa 2015)

Unsteady Carnot heat engine
  +
 Bulk energy conversion rate



Carnot Heat Engine and TC MPI theory

 (Emanuel,1988)
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Unsteady Carnot Heat Engine and TC Intensification
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Ozawa & Shimokawa (2015)
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Ozawa & Shimokawa (2015) assumed μ=70% of heat energy is converted to inner-core 
mechanical energy

SST
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 Thermodynamic efficiency
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Emanuel’s time-dependent theory   
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Emanuel (2012)

Starting from momentum and entropy budget equations in angular momentum coordinates  
[                        ]

Integrating both vertically through the boundary layer 

Using bulk scheme for surface boundary condition 

An equation for boundary layer entropy budget 

Dynamically based time-dependent theory



Emanuel (2012)

Emanuel (2012) made the following assumptions:

1)  A TC is assumed to be axisymmetric and in thermal wind balance above the boundary 
layer;

2) The radius of maximum wind is a material surface, and thus the angular momentum 
(Vmax∗Rm) is nearly a constant;

3) The absolute angular momentum (M) surface and the saturation entropy (s*) surface are 
nearly congruent in eyewall ascent, namely the eyewall ascent is moist neutral.  

Emanuel’s time-dependent theory   

Dynamically based time-dependent theory

�����

�� ≅
��

2ℎ  ����
2 − ����

2  

����
2 =

��

��
 
1
2

��

��
 
 �� ��  2−  �� ��  

 �� − ��  �0 − ��
∗ 

�����
��

= ��
�

 �����
2 − ����

2 )



Emanuel’s time-dependent IR equation   
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Dynamically based time-dependent theory

Emanuel (2012)



Ozawa & Shimokawa (2015)
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Observations

The steady-state intensity is only 70% 
of the corresponding ����!

Some weaknesses of the early time-dependent theories
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For an axisymmetric TC vortex, we have the budget equation

Intensification potential

Frictional weakening potential

Basic understanding on the deficiencies of the current theories
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Some weaknesses of the early time-dependent theories



Peng et al. (2019)

Initial state

mature state

Possible reasons for the discrepancies 

2. The moist-neutral eyewall ascent is not 
satisfied in an intensifying storm

1. The material surface of the RMW, 
and thus conservation of (Vmax×Rm)

Some weaknesses of the early time-dependent theories
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Wang et al. (2021a)
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A modified energetically based time-dependent theory
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(a) SST28_WNP (b) SST28_WNP

(c) SST29_WNP (d) SST29_WNP

(e) SST30_WNP (f) SST30_WNP

(g) SST31_WNP (h) SST31_WNP

Wang et al. (2021a)

A modified energetically based time-dependent theory

Time 
dependence 

Intensity 
dependence 
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 We start with the following slab boundary layer equations in Cartisian coordinates

A new dynamically based time-denpendent theory

Assuming that the boundary layer is in thermodynamic quasi-equilibrium
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Combining the two equations, we have
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 A key assumption well supported by full-physics model simulations  

Wang et al. (2021b)
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 The thermodynamic quasi-equilibrium 
assumption is well supported by 
full-physics model CM1 simulations  

Moist entropy budget equation



Following Emanuel (986, 2012), for a mature storm, 
integrating the thermal wind relationship below

along the moist neutral eyewall ascent
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Emanuel (2012)

Introducing a new ad-hoc parameter A’ to measure the degree of the congruence between the M and S* surface 
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A new dynamically based time-denpendent theory
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Wang et al. (2021b)

The tangential wind budget equation following the RMW 

Using the definition of E-MPI, the above equation can be rewritten as  
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A new dynamically based time-dependent theory

A natural option is to assume A to be a function of the relative intensity, namely � =  ����
����

 � with n ( > 0 ) 

is a power constant calibrated using idealized simulations and best-track data, which gives � = 3/2.  
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A is supported by the fitting based on the best-track data and full physics model simulations
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Observation Simulations

Xu and Wang 2022

n=3/2 gives the best fiting for both

A new dynamically based time-dependent theory

Wang et al. (2021b)

���� ���� ���� ����



(a)

(b)

Wang et al. (2021b)

Idealized simulations using 
the full physics CM1 model

A new dynamically based time-dependent theory
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Top 99% averaged IR 
from the best-track data

Theoretical estimate

Xu and Wang (2022)

Verification using 

best-track data

P IR  –  P o t e n t i a l 

intensification rate

A new dynamically based time-dependent theory



Equivalence of the energetically based & dynamically based 
time-dependent theories
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Inclusion of dissipative heating

The equation of intensification rate becomes

Some refinements to the time-dependent theory
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Without dissipative heating

With dissipative heating (DH)
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Contribution of dissipative heating to TC IR

Wang et al. (2022)
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No DH

VEMPI=75 m/s IR IR
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Without DH considered 
underestimates IRs of 
strong TCs

W i t h  D H  c o n s i d e r e d 
reduces underestimates 
of IRs of strong TCs
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Inclusion of isothermal expansion effect and SST-Ta



Effect of isothermal expansion
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Effect of air-sea temperature difference
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• A unified time-dependent theory of TC intensification has been constructed, which 
overcomes several weaknesses in previous energetically based and dynamically based 
time-dependent theories.

• Several new refinements have been achieved. They are the inclusions of dissipative 
heating, isothermal expansion, and explicit air-sea temperature difference.

• Isothermal expansion can lead to an increase in IR by 20% and in MPI by 10%; DH 
can lead to an increase in IR by 45% and in MPI by 22% at the tropical conditions, 
especially for very strong TCs.

•  A new result is the significant increase in both the IR and MPI with the increasing air-
sea temperature difference, which is almost independent of SST.

• The MPIR is proportional to the square of MPI. As a result, under global warming, 
TCs will be not only more intense but also intensify more rapidly.

A brief summary of the new theoretical developments
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Applications (1) 
Quantifying environmental effects on TC intensity change

Xu, Wang, & Yang (2023)
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We can introduce an ad-hoc environmental ventilation B (� ≤ � ≤ �), which reflects all 
environmental processes that are detrimental to the moist-neutral condition of the eyewall 
updraft (such as the ventilations due to vertical wind shear, fast translation of the TC, and 
dry air intrusion due to interaction with mid-latitude westerly trough).

� = � ���,  ������,  ���, ⋯)

B will be determined based on deep machine learning using the best-track TC data and 
reanalysis data, and then numerically integrating the IR equation to predict TC intensity.
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                            Vmax/Vmpi                                                                              B

The best-track data of 
TCs over the North 
Atlantic, the central 
a n d  e a s t e r n  N o r t h 
P a c i f i c  d u r i n g 
1982–2021 and over 
t h e  w e s t e r n  N o r t h 
P a c i f i c  d u r i n g 
1990–2020.

We used α=0.75, CD=2.4∙10-3, h=2000 m

Applications (1) 
Quantifying environmental effects on TC intensity change
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Xu, Wang, & Yang (2023)



B is contributed by various individual environmental ventilation parameters. � = �1 × �2 × �3⋯�6. Here 
in total we chose 6 factors (Table below) obtained from the statistical hurricane intensity prediction scheme 
(SHIPS) database.

Variables Unit Description

Vm m s-1 Current TC intensity calculated by subtracting 40% of the translation speed from the 
best-track data

���� m s-1 Maximum potential intensity (Emanuel 1986) 

VWS m s-1 Deep-layer vertical wind shear defined as vector difference of winds averaged within 
200-800 km between 850 and 200 hPa

COHC  Climatological ocean heat content (kJ cm-2).

D200 107s-1 Divergence averaged within a radius of 1000 km from the TC center at 200 hPa

RHMD % Mean 500-700 hPa RH averaged between 200-800 km from the TC center

dMPI m s-1 MPI difference between t0 and t0+6h alone TC track
SPD m s-1 Translation speed of the TC system.

Applications (1) 
Quantifying environmental effects on TC intensity change



� = �1 × �2 × �3⋯�6=  �=1
6 ��, six factors are VWS, COHC, D200, RHMD, dPMI, 

SPD. 
To quantify B and Bj, a two-stage machine learning (ML) approach was adopted:

1). eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016) was used to build a black-box but exact model of 
log(B) to capture the nonlinear relationship between log� and the selected 6 environmental factors. The XGBoost algorithm 
is a popular implementation of boosted regression trees (Friedman, 2001). 

log� = �(VWS, COHC, D200, RHMD, dMPI, SPD)

2). SHapley Additive exPlanations (SHAP) technique (Lundberg et al. 2020) was used to transform the black-box model of 
log(B) to an additive model. SHAP is an additive feature attribution method that attributes values to each feature as the 
change in the expected model prediction when conditioning on that feature (Lundberg et al. 2020). For a specific input x, the 
SHAP values �� for each feature i should sum up to the output � � :

The sum of feature attributions -�� �, �  matches the original model output � � , where �0 � = � � �   is the bias 
term. 

� � = �0 � +  
�=1
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Applications (1) 
Quantifying environmental effects on TC intensity change

Xu, Wang, & Yang (2023)



By proportionally allocating G to each SHAP value according to their global feature importance �� = 1
�

 �=1
�  ��� , 

which is the mean absolute SHAP value across all samples, we have �′�� = �×��
 �=1

6 ��
+ ���, and finally we can have 

log�� =  �=1
6 ���

′ . 
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log�� = � +  �=1
6 ��� log� = �(VWS, COHC, D200, RHMD, dMPI, SPD)

where G is the bias term (the overall mean of log�);  and ��� (� = 1,2, …, 6) are SHAP values corresponding to the 6 
environmental factors for the ith sample. 

log�� =  �=1
6 log  ��� , 

By definition, �′�� = log  ��� , where ��� ∈  0,1 . We thus have 

Similar to Bi, we can have Bij at a given time for a TC. With all samples, we can calculate the overall contribution of 
each of the environmental factors and thus get the relative importance of each environmental factor.

Xu, Wang, & Yang (2023)

for the ith sample, namely a given time for a TC. 

Applications (1) 
Quantifying environmental effects on TC intensity change



Relative importance of six individual environmental factors in the XGBoost model. Factors are given in a 
descending order of their relative importance

Applications (1) 
Quantifying environmental effects on TC intensity change

Xu, Wang, & Yang (2023)



Contributions to B Contributions to IR

Applications (1) 
Quantifying environmental effects on TC intensity change
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ØThe key is to establish the relationship between B and environmental factors. 
ØB is a multiplication of all individual environmental ventilation parameters, and thus 

could not be determined by multiple regression method.
ØWe combine the Bayesian hierarchical model (BHM) and neural network (NN) to 

determine B. 
• NN: establish a latent process model to relate B with environmental factors, the 

neuron weights W needs to be deduced.
• Likelihood (LH) can be calculated based on the ���� theory and data.

• BHM：based on Bayes’ rule, assume the prior � �, ���� , combine with the LH 
� ����|�, �� , to obtain the posterior � �, ��|���� 

� �, ��|���� ∝ � ����|�, �� × � �, �� 
ØA sample of W are drawn from the posterior distribution of W for prediction purpose.

Applications (2): Prediction of TC intensity



Flowchart
• At time t, we know ���� �  and all environmental factors, apply the  sample of W to NN 

model to obtain the ensemble prediction of � � .

• Discretize the IR equation using ���� � 、���� �  and � � ’s ensemble prediction

      Here ∆���� is ensemble prediction and ∆� is time interval.

• At t+1，���� � + 1 ← ���� � + ∆����，∆���� is the ensemble mean.

• Go to the first step until the time of prediction.

• This is actually a Bayesian model averaging (BMA) approach. The results are much more 
robust than using any individually optimized NN model.
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Applications (2): Prediction of TC intensity



Hindcasts of TCs over the North Atlantic during 2019-2021
• Datasets：

• 6 hourly TC best-track data during 1982—2021; Environmental factors are from GFS 
reanalysis data from SHIPS dataset.

• Training period: 1982—2018; Verification period: 2019—2021, 65 TCs.
• NN model：

• Predictor: 66 altogether, including 
• 6 climatological persistence variables
• 32 atmospheric dynamical factors
• 28 atmospheric thermodynamic factors

• Model structure：One hidden layer with 10 neurons (optimized).
• Cases of neuron weights W from the posterior: n = 100.

Applications (2): Prediction of TC intensity



Mean errors for 65 TCs over the North Atlantic during 2019-2021 
hindcasts using GFS analysis and best-track data

Applications (2): Prediction of TC intensity



Hindcast cases with GFS 
analysis & best-track data

Applications (2): Prediction of TC intensity



Mean errors for the same 65 TCs but with GFS 
forecasts of track and environmental fields

Main reasons: errors in track 
and factor forecasts, e.g., CFLX

Applications (2): Prediction of TC intensity

CFLX: Dry-air predictor based on the difference in surface moisture 
flux between air with the observed (GFS) RH value, and with RH of 
air mixed from 500 hPa to the surface, at the TC location



Mean errors for the same 65 TCs with 
GFS analysis of environmental fields Mean errors for the same 65 TCs with 

GFS forecasts of track & environment

Applications (2): Prediction of TC intensity

The model was retrained without the use of CFLX



Applications (2): Prediction of TC intensity

Forecast cases with GFS forecasts of track and environmental factors (blue)
Also shown are intensity hindcasts with GFS analysis fields (red)



Ø Classic views on tropical cyclone (TC) intensification

Ø Early efforts toward time-dependent theories

Ø A unified time-dependent theory of TC intensification 

Ø Applications: 

Quantifying environmental effects on TC intensity change

Prediction of TC intensity

ØFuture directions

Outline
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Future directions
1. The maximum possible intensification rate (MPIR)

Given the SST and environmental conditions, Ta and 
RH, we can estimate the MPIR when � ≈ 0.6
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Future directions

TC IR is proportional to the square 
of MPI GW will cause more RI?

Wang et al. (2023)

2. Long-term trends and global warming impacts

TCs may become more intense and 
intensify more rapidly under global 
warming

Emanuel (2017)
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Future directions

TC intensity prediction is very 
sensitive to initial intensity error

Error grows rapidly during 
RI stage but is originated 
from errors in the weak TC 
stage

Wang et al. (2023)

3. Theoretical predictability of TC intensity



Future directions
4. Understanding contributions by various factors to individual TCs

Different contributions of various environmental 
factors in different TC cases

Xu, Wang, & Yang (2023)
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Thank you for your attention!

Any questions or comments?


