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» Classic views on tropical cyclone (TC) intensification



Classic views on TC intensification

1964: CISK 1982:Balanced dynamics 1986: WISHE

All are qualitative descriptions — Emphasize a certain positive feedback process



Classic views on TC intensification
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Classic views on TC intensification

Balanced vortex dynamics

For an axisymmetric TC
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Classic views on TC intensification

» Classic views: Qualitative descriptions of certain positive feedback processes
(CISK, WISHE, balanced dynamics)

» New efforts: To quantify TC intensification rate by developing physically/dynamically

based time-dependent theories (equations)

— A theoretical basis for understanding climate change impact on TC intensification,

> Significance:

similar to MPI theory on TC intensity.

— Potential applications to TC intensity forecasting.



»> Early efforts toward time-dependent theories



Early efforts toward time-dependent theories

® Dynamically based time-dependent theory (Emanuel 2012)

Slab boundary layer entropy & momentum budget equations
+

Moist neutral eyewall convection (ascent)

® Energetically based time-dependent theory (Ozawa & Shimokawa 2015)

Unsteady Carnot heat engine
+

Bulk energy conversion rate




Carnot Heat Engine and TC MPI theory
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Unsteady Carnot Heat Engine and TC Intensification

Power dissipation
Power

Power generation

dK/dt=PEe-FD
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Energetically based time-dependent theory

- _ = o, Thermodynamic efficiency
SST
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Ozawa & Shimokawa (2015) assumed n=70% of heat energy is converted to inner-core
mechanical energy
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Dynamically based time-dependent theory

Emanuel’s time-dependent theory

Starting from momentum and entropy budget equations in angular momentum coordinates

| = +3 r) ]

Integrating both vertically through the boundary layer

dsy, ds;,
Ap,— > T T — M = BT, + D,
Using bulk scheme for surface boundary condition
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An equation for boundary layer entropy budget
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Dynamically based time-dependent theory

Emanuel’s time-dependent theory
Emanuel (2012) made the following assumptions:

1) ATC 1s assumed to be axisymmetric and in thermal wind balance above the boundary
layer;

2) The radius of maximum wind 1s a material surface, and thus the angular momentum
(V...x Ry, 1s nearly a constant;

3) The absolute angular momentum (A7) surface and the saturation entropy (s *) surface are
nearly congruent in eyewall ascent, namely the eyewall ascent 1s moist neutral.

1
2 0 Emanuel (2012)
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Dynamically based time-dependent theory

Emanuel’s time-dependent IR equation
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Some weaknesses of the early time-dependent theories
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Some weaknesses of the early time-dependent theories

Basic understanding on the deficiencies of the current theories

For an axisymmetric TC vortex, we have the budget equation

2 2

e — _ I ZEmanuel (2012)




Some weaknesses of the early time-dependent theories

Possible reasons for the discrepancies

1. The material surface of the RMW,
and thus conservation of (V.. %<R,,)

2. The moist-neutral eyewall ascent is not
satisfied in an intensifying storm
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» A unified time-dependent theory of TC intensification



A modified energetically based time-dependent theory
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A modified energetically based time-dependent theory
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A new dynamically based time-denpendent theory

We start with the following slab boundary layer equations in Cartisian coordinates

—+ —==— 10 10
- (<1.0) 1s an efficiency parameter describing effects of sub-
—+ —=— 10 o— saturation or downdraft.

Assuming that the boundary layer is in thermodynamic quasi-equilibrium

—=— 10 o0~ _ A key assumption well supported by full-physics model simulations

1 — -

SR o= [—— 10

Wang et al. (2021b)



Moist entropy budget equation

The thermodynamic quasi-equilibrium
assumption is well supported by
full-physics model CM1 simulations

0.0015

0.0010

0.0005

0.0000

-0.0005

-0.0010

0.0020

0.0010

0.0000

-0.0010

-0.0020

0.0020 —

0.0000

-0.0020

0.0020

0.0000

-0.0020

i NS ST PN e s

(a) SST28_WNP

ADV
DSDT

AforaA /AN,

TJTVTT T[T T T T T T TR T TfrerTs
I I I I I I

RTINS EYETETETI SRS AR

(b) SST29 WNP

l[llllll]llflllllfl

T T I T

ADV
DSDT

M ->__".‘\__,.—x/\ AP, NN A

I I I
48 72

I I | I [ !
96 120 144 168 192 216 240
Time (hour)

0.0012

0.0008

0.0004

-0.0000

-0.0004

-0.0008

0.0010

0.0000

-0.0010

0.0020

0.0010

0.0000

-0.0010

-0.0020

0.0020

0.0000

-0.0020

1 (e) SST27 NA L
_; —*"‘-TUHE‘ ,'J"."'\;‘" .:_-:\_.f' .i‘.; L oo ;—
4 ADV I} Y -

: DSDT :
R | | | | | T T | | -

| () SST28 NA :

1 T — T i
g ADV _

] DSDT N

T | | | T T | -

1 (h) SST30 NA -

| ADV i
] DSDT n

T | | | | | T | |
0 24 48 72 96 120 144 168 192 216 240
Time (hour)



A new dynamically based time-denpendent theory

Following Emanuel (986, 2012), for a mature storm, 7 t
integrating the thermal wind relationship below

1 1

3 2

along the moist neutral eyewall ascent
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Emanuel (2012)

Introducing a new ad-hoc parameter A’ to measure the degree of the congruence between the M and S* surface
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A new dynamically based time-dependent theory

The tangential wind budget equation following the RMW

— ! I 2
Using the definition of E-MPI, the above equation can be rewritten as

= 2 =2 ¢ The New IR equation

2

where = ', and =— 90—
A natural option is to assume 4 to be a function of the relative intensity, namely = —— withn(>0)
is a power constant calibrated using idealized simulations and best-track data, which gives = 3/2.

3/2 2

Wang et al. (2021b)



A new dynamically based time-dependent theory

— 2 2 = — n=3/2 gives the best fiting for both
A 1s supported by the fitting based on the best-track data and full physics model simulations
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A new dynamically based time-dependent theory
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A new dynamically based time-dependent theory

Verification using

best-track data

PIR — Potential

intensification rate
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Equivalence of the energetically based & dynamically based

time-dependent theories

Energetically based = 2 - 2 Dynamically based = 2 _ 2
d 1122 — & s 3
ffpa(g 4 )rd'rdz =E [ peC|V| (k) — kdrdr — [ pCp |V| rdr
1, L
Ozawa & Shimokawa (2015) approximated — 5 = —
Lo =
Here, we assume the volume-averaged wind speed ) = —
_5 0V N 3
HPVE = EPo€CiVimax (Ko — Kadrm — PoCpViax
2 2

B=V/Var  @/h=po/(pHu?) — — = -



Some refinements to the time-dependent theory

Inclusion of dissipative heating

- o— | - 2
o | ) @ ©_ 2
0

The equation of intensification rate becomes

With dissipative heating (DH)

Without dissipative heating

Wang et al. (2022)
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Inclusion of isothermal expansion effect and SST-Ta

0622 2
Wang et al. (2023)
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Effect of isothermal expansion
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Effect of air-sea temperature difference
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A brief summary of the new theoretical developments

* A unified time-dependent theory of TC intensification has been constructed, which
overcomes several weaknesses in previous energetically based and dynamically based
time-dependent theories.

* Several new refinements have been achieved. They are the inclusions of dissipative
heating, 1sothermal expansion, and explicit air-sea temperature difference.

* [sothermal expansion can lead to an increase in IR by 20% and in MPI by 10%; DH
can lead to an increase in IR by 45% and in MPI by 22% at the tropical conditions,
especially for very strong TCs.

* A new result 1s the significant increase in both the IR and MPI with the increasing air-
sea temperature difference, which is almost independent of SST.

* The MPIR 1s proportional to the square of MPI. As a result, under global warming,
TCs will be not only more intense but also intensify more rapidly.



»> Applications:

Quantifying environmental effects on TC intensity change

Prediction of TC intensity



Applications (1)

Quantifying environmental effects on TC intensity change

We can introduce an ad-hoc environmental ventilation B ( = <= ), which reflects all
environmental processes that are detrimental to the moist-neutral condition of the eyewall
updraft (such as the ventilations due to vertical wind shear, fast translation of the TC, and
dry air intrusion due to interaction with mid-latitude westerly trough).

3/2 2
— 2

= , , )

B will be determined based on deep machine learning using the best-track TC data and
reanalysis data, and then numerically integrating the IR equation to predict TC intensity.

Xu, Wang, & Yang (2023)



Applications (1)

Quantifying environmental effects on TC intensity change

= — T — We used 0=0.75, C;=2.4-10-3, h=2000 m
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Applications (1)

Quantifying environmental effects on TC intensity change

B 1s contributed by various individual environmental ventilation parameters. = 1 X - X 3 . Here
in total we chose 6 factors (Table below) obtained from the statistical hurricane intensity prediction scheme
(SHIPS) database.

Current TC intensity calculated by subtracting 40% of the translation speed from the
Vm m s!
best-track data
_ m s Maximum potential intensity (Emanuel 1986)
VWS m sl Deep-layer vertical wind shear defined as vector difference of winds averaged within

200-800 km between 850 and 200 hPa

Climatological ocean heat content (kJ cm2).

107s-1 Divergence averaged within a radius of 1000 km from the TC center at 200 hPa

% Mean 500-700 hPa RH averaged between 200-800 km from the TC center

m s! MPI difference between t0 and t0+6h alone TC track
Translation speed of the TC system.

=



Applications (1)

Quantifying environmental effects on TC intensity change

= X X 3 g °, ,sixfactors are VWS, COHC, D200, RHMD, dPMI,

1
SPD.
To quantify B and B, a two-stage machine learning (ML) approach was adopted:

1). eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016) was used to build a black-box but exact model of
log(B) to capture the nonlinear relationship between log and the selected 6 environmental factors. The XGBoost algorithm
is a popular implementation of boosted regression trees (Friedman, 2001).

log = (VWS, COHC, D200, RHMD, dMPI, SPD)

2). SHapley Additive exPlanations (SHAP) technique (Lundberg et al. 2020) was used to transform the black-box model of
log(B) to an additive model. SHAP is an additive feature attribution method that attributes values to each feature as the
change in the expected model prediction when conditioning on that feature (Lundberg et al. 2020). For a specific input x, the
SHAP values  for each feature i should sum up to the output

= 0 —+ )
=1
The sum of feature attributions - ,  matches the original model output , where o = is the bias

term. Xu, Wang, & Yang (2023)



Applications (1)

Quantifying environmental effects on TC intensity change

1
+

log = (VWS, COHC, D200, RHMD, dMPI, SPD) log —1

where G is the bias term (the overall mean of log ); and ( = 1,2,...,6) are SHAP values corresponding to the 6
environmental factors for the ith sample.

By proportionally allocating G to each SHAP value according to their global feature importance = 1 —1 )
X

which 1s the mean absolute SHAP value across all samples, we have ' =-—4—+ | and finally we can have

=1
6
=1

log =

By definition, " = log , Where 0,1 . We thus have

log = "_.log = for the ith sample, namely a given time for a TC.

Similar to Bi, we can have Bij at a given time for a TC. With all samples, we can calculate the overall contribution of
each of the environmental factors and thus get the relative importance of each environmental factor.

Xu, Wang, & Yang (2023)



Applications (1)

Quantifying environmental effects on TC intensity change

VWS 0.25
COHC 0.18

D200 0.17
RHMD 0.16

dMPI 0.14

SPD 0.11

[ [ [ [ |
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Relative importance of six individual environmental factors in the XGBoost model. Factors are given in a
descending order of their relative importance Xu, Wang, & Yang (2023)



Applications (1)

Quantifying environmental effects on TC intensity change

Contributions to B Contributions to IR
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Applications (2): Prediction of TC intensity

» The key is to establish the relationship between B and environmental factors.

» B 1s a multiplication of all individual environmental ventilation parameters, and thus
could not be determined by multiple regression method.

» We combine the Bayesian hierarchical model (BHM) and neural network (NN) to
determine B.

* NN: establish a latent process model to relate B with environmental factors, the
neuron weights W needs to be deduced.

* Likelihood (LH) can be calculated based on the theory and data.

* BHM: based on Bayes’ rule, assume the prior , , combine with the LH

| | , to obtain the posterior .
o | X

» A sample of W are drawn from the posterior distribution of W for prediction purpose.



Applications (2): Prediction of TC intensity

Flowchart

e At time ¢, we know and all environmental factors, apply the sample of W to NN
model to obtain the ensemble prediction of

* Discretize the IR equation using . and ’s ensemble prediction

B == 7 — - —  xA

Here A 1s ensemble prediction and A 1s time interval.

e Atr+1, +1 -~ + A A 1s the ensemble mean.

* Go to the first step until the time of prediction.

 This is actually a Bayesian model averaging (BMA) approach. The results are much more
robust than using any individually optimized NN model.



Applications (2): Prediction of TC intensity

Hindcasts of TCs over the North Atlantic during 2019-2021

 Datasets:

* 6 hourly TC best-track data during 1982—2021; Environmental factors are from GFS
reanalysis data from SHIPS dataset.

* Training period: 1982—2018; Verification period: 2019—2021, 65 TCs.
* NN model:
* Predictor: 66 altogether, including
* 6 climatological persistence variables
* 32 atmospheric dynamical factors
28 atmospheric thermodynamic factors
* Model structure: One hidden layer with 10 neurons (optimized).

* Cases of neuron weights W from the posterior: n = 100.



Applications (2): Prediction of TC intensity

Mean errors for 65 TCs over the North Atlantic during 2019-2021
hindcasts using GFS analysis and best-track data
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Applications (2): Prediction of TC intensity

Hindcast cases with GFS
analysis & best-track data
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Applications (2): Prediction of TC intensity

Main reasons: errors in track

Mean errors for the same 65 TCs but with GFS and factor forecasts, e.g., CFLX
forecasts of track and environmental fields ' — poapee
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CFLX: Dry-air predictor based on the difference in surface moisture
flux between air with the observed (GFS) RH value, and with RH of
air mixed from 500 hPa to the surface, at the TC location
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Applications (2): Prediction of TC intensity

The model was retrained without the use of CFLX

Mean errors for the same 65 TCs with

GFS forecasts of track & environment
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Applications (2): Prediction of TC intensity

Forecast cases with GFS forecasts of track and environmental factors (blue)
Also shown are intensity hindcasts with GFS analysis fields (red)
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» Future directions



Future directions

1. The maximum possible intensification rate (MPIR)
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Future directions

2. Long-term trends and global warming impacts

__ 2 vz ? TC IR 1s proportional to the square
of MPI GW will cause more RI?
70 = Emanuel (2017)
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Future directions

3. Theoretical predictability of TC intensity
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Future directions

4. Understanding contributions by various factors to individual TCs

(a) Katrina(2005) (b)
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Thank you for your attention!

Any questions or comments?



