00:49:54 Andrés Rodríguez Flores: Gracias! 00:53:14 Christian Barreto: *--------------------- 00:53:16 Christian Barreto: #cargar datos de chuquibambilla import numpy as np import pandas as pd import matplotlib.pyplot as plt file="Chuquibambilla_Puno.xlsx" data=pd.read_excel(file) data 00:55:24 Christian Barreto: data_idx=data.set_index("FECHA") #seleccionamos mes =2, FEB data_feb=data_idx.loc[data_idx.index.month==2] 00:57:44 Christian Barreto: # seleccionar 1981-2010 data_feb_c=data_feb.loc["1981":"2010"] data_feb_c 00:58:22 Christian Barreto: data_feb_c.plot(marker="o") 01:00:13 Christian Barreto: data_feb_c.sample(n=30,replace=True).plot(marker="o") 01:06:24 Christian Barreto: promedios=[] for i in range(1,1000): a=data_feb_c.sample(n=30,replace=True).mean()[0] promedios.append(a) type(promedios) 01:10:15 Andrés Rodríguez Flores: Cristian que es lo que hace el "replace(true)"? 01:11:23 Christian Barreto: plt.hist(promedios) plt.axvline(np.percentile(promedios,2.5),color="g",linestyle="dashed",linewidth=2) plt.axvline(np.percentile(promedios,97.5),color="g",linestyle="dashed", linewidth=2) print("promedio sin btstrp: ",data_feb_c.CHUQUIBAMBILLA.mean()) print("promedio con btstrp: ",np.mean(promedios)) print("Int. de confianza al 95%: ",np.percentile(promedios,2.5),"-",np.percentile(promedios,97.5)) 01:36:56 Christian Barreto: ******************************* 01:37:06 Christian Barreto: %reset -sf import numpy as np import pandas as pd import matplotlib.pyplot as plt file="otrasestaciones.xlsx" data=pd.read_excel(file) data_idx=data.set_index('FECHA') data_idx=data_idx["HUANUCO"] data_idx print(type(data_idx)) 01:37:16 Christian Barreto: #seleccionar mes = 4 data_apr=data_idx.loc[data_idx.index.month==4] data_apr_c=data_apr.loc["1981":"2010"] print(type(data_apr_c)) data_apr_c 01:37:22 Christian Barreto: promedios=[] series=[] for i in range(1,1000): # 5 no cuenta a=data_apr_c.sample(n=30,replace=True).mean() promedios.append(a) series.append(a) 02:20:11 Christian Barreto: ****************************************** 02:20:14 Christian Barreto: ******************************************************************* 02:20:36 Christian Barreto: pip install -U seaborn 02:22:16 Christian Barreto: %reset -sf import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #pip install -U seaborn file="Chuquibambilla_Puno.xlsx" data=pd.read_excel(file) data 02:24:00 Christian Barreto: sns.histplot(data,stat="probability") 02:24:01 José Luis Ñiquen Sánchez DZ11: por favor puede compartir los comandos anteriores, se me fue el internet 02:24:10 Christian Barreto: ************************************** 02:24:11 Christian Barreto: * 02:24:18 Christian Barreto: %reset -sf import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #pip install -U seaborn file="Chuquibambilla_Puno.xlsx" data=pd.read_excel(file) data 02:24:24 Christian Barreto: sns.histplot(data,stat="probability") # density, count, frequency 02:24:42 Christian Barreto: pip install -U seaborn 02:29:06 Christian Barreto: #-------------- 02:29:11 Christian Barreto: #en febrero data_idx=data.set_index('FECHA') data_feb=data_idx.loc[data_idx.index.month==2] sns.histplot(data_feb,stat="probability",bins=10) # density, frequency, count, probability 02:30:27 Christian Barreto: #en julio data_idx=data.set_index('FECHA') data_jul=data_idx.loc[data_idx.index.month==7] sns.histplot(data_jul,stat="probability",bins=10) # density, frequency, count, probability 02:36:07 Christian Barreto: # plotear junto con el KDE (Kernel density smoothing) ax=sns.histplot(data_feb,stat="probability",kde=True) ax.set_title("histograma Enero chuquibambilla") 02:36:44 Christian Barreto: #------------------ 02:36:45 Christian Barreto: sns.histplot(data_feb,stat="probability",bins=[0,25,50,75,100,125,150,175,200,225,250]) 02:39:50 Christian Barreto: #CDF empirical sns.histplot(data_feb,bins=10,kde=True,cumulative=True,stat="probability") 02:41:05 Christian Barreto: #solo KDE sns.displot(data_feb,kind="kde") 02:41:37 Christian Barreto: sns.displot(data_feb,kind="kde",cumulative=True) 02:58:00 Christian Barreto: ################################# 02:58:02 Christian Barreto: d1=data_feb.loc["1961":"1990"] d3=data_feb.loc["1981":"2010"] d1=d1.rename(columns={"CHUQUIBAMBILLA":"61-90"}) d3=d3.rename(columns={"CHUQUIBAMBILLA":"81-10"}) newdata = pd.concat([d1,d3], axis=1) sns.histplot(newdata,stat="probability",kde=True,bins=[0,25,50,75,100,125,150,175,200,225,250]) plt.axvline(d1.median()[0],color="blue") plt.axvline(d1.quantile(0.95)[0],color="blue",linestyle="dashed") plt.axvline(d1.quantile(0.05)[0],color="blue",linestyle="dashed") plt.axvline(d3.median()[0],color="orange") plt.axvline(d3.quantile(0.95)[0],color="orange",linestyle="dashed") plt.axvline(d3.quantile(0.05)[0],color="orange",linestyle="dashed") 03:53:37 Christian Barreto: https://docs.google.com/spreadsheets/d/1V2KSk0qfBRliTknmHu_jHbHxa4U0Wou0gxhPvTeZ_cM/edit#gid=0