{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Dimensions: (lat: 72, lon: 144, time: 510)\n", "Coordinates:\n", " * lat (lat) float32 88.75 86.25 83.75 81.25 ... -83.75 -86.25 -88.75\n", " * lon (lon) float32 1.25 3.75 6.25 8.75 11.25 ... 351.2 353.8 356.2 358.8\n", " * time (time) datetime64[ns] 1979-01-01 1979-02-01 ... 2021-06-01\n", "Data variables:\n", " precip (time, lat, lon) float32 ...\n", "Attributes:\n", " Conventions: COARDS\n", " title: CPC Merged Analysis of Precipitation (excludes NCEP Reana...\n", " platform: Analyses\n", " source: ftp ftp.cpc.ncep.noaa.gov precip/cmap/monthly\n", " dataset_title: CPC Merged Analysis of Precipitation\n", " documentation: https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html\n", " date_modified: 26 Feb 2019\n", " References: https://www.psl.noaa.gov/data/gridded/data.cmap.html\n", " version: V2107\n", " history: update 07/2021 V2107\n", " data_modified: 2021-07-09\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:  (lat: 72, lon: 144, time: 510)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 88.75 86.25 83.75 81.25 ... -83.75 -86.25 -88.75\n",
       "  * lon      (lon) float32 1.25 3.75 6.25 8.75 11.25 ... 351.2 353.8 356.2 358.8\n",
       "  * time     (time) datetime64[ns] 1979-01-01 1979-02-01 ... 2021-06-01\n",
       "Data variables:\n",
       "    precip   (time, lat, lon) float32 ...\n",
       "Attributes:\n",
       "    Conventions:    COARDS\n",
       "    title:          CPC Merged Analysis of Precipitation (excludes NCEP Reana...\n",
       "    platform:       Analyses\n",
       "    source:         ftp ftp.cpc.ncep.noaa.gov precip/cmap/monthly\n",
       "    dataset_title:  CPC Merged Analysis of Precipitation\n",
       "    documentation:  https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html\n",
       "    date_modified:  26 Feb 2019\n",
       "    References:     https://www.psl.noaa.gov/data/gridded/data.cmap.html\n",
       "    version:        V2107\n",
       "    history:        update 07/2021 V2107\n",
       "    data_modified:  2021-07-09
" ], "text/plain": [ "\n", "Dimensions: (lat: 72, lon: 144, time: 510)\n", "Coordinates:\n", " * lat (lat) float32 88.75 86.25 83.75 81.25 ... -83.75 -86.25 -88.75\n", " * lon (lon) float32 1.25 3.75 6.25 8.75 11.25 ... 351.2 353.8 356.2 358.8\n", " * time (time) datetime64[ns] 1979-01-01 1979-02-01 ... 2021-06-01\n", "Data variables:\n", " precip (time, lat, lon) float32 ...\n", "Attributes:\n", " Conventions: COARDS\n", " title: CPC Merged Analysis of Precipitation (excludes NCEP Reana...\n", " platform: Analyses\n", " source: ftp ftp.cpc.ncep.noaa.gov precip/cmap/monthly\n", " dataset_title: CPC Merged Analysis of Precipitation\n", " documentation: https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html\n", " date_modified: 26 Feb 2019\n", " References: https://www.psl.noaa.gov/data/gridded/data.cmap.html\n", " version: V2107\n", " history: update 07/2021 V2107\n", " data_modified: 2021-07-09" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "\n", "import pandas as pd\n", "\n", "import matplotlib.pyplot as plt\n", "\n", "import xarray as xr\n", "\n", "dset = xr.open_dataset(\"precip.mon.mean.nc\")\n", "print(dset)\n", "dset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'precip' (time: 30, lat: 28, lon: 40)>\n",
       "array([[[ 5.15,  2.73, ...,  0.  ,  0.  ],\n",
       "        [10.73, 10.12, ...,  1.24,  0.03],\n",
       "        ...,\n",
       "        [ 1.96,  1.6 , ...,  0.98,  0.86],\n",
       "        [ 1.97,  1.57, ...,  1.17,  1.23]],\n",
       "\n",
       "       [[ 3.34,  1.97, ...,  0.  ,  0.03],\n",
       "        [ 9.69,  8.94, ...,  1.56,  0.17],\n",
       "        ...,\n",
       "        [ 1.19,  1.07, ...,  0.96,  0.81],\n",
       "        [ 0.96,  0.86, ...,  1.02,  1.07]],\n",
       "\n",
       "       ...,\n",
       "\n",
       "       [[ 5.55,  4.71, ...,  0.04,  0.22],\n",
       "        [ 5.06,  5.8 , ...,  2.96,  0.04],\n",
       "        ...,\n",
       "        [ 0.82,  1.28, ...,  1.45,  1.45],\n",
       "        [ 1.2 ,  1.24, ...,  1.08,  0.76]],\n",
       "\n",
       "       [[10.98,  5.96, ...,  0.07,  0.23],\n",
       "        [16.5 , 17.03, ...,  1.68,  0.  ],\n",
       "        ...,\n",
       "        [ 1.22,  0.77, ...,  0.77,  0.69],\n",
       "        [ 0.88,  0.99, ...,  0.9 ,  0.71]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 8.75 6.25 3.75 1.25 ... -51.25 -53.75 -56.25 -58.75\n",
       "  * lon      (lon) float32 251.2 253.8 256.2 258.8 ... 341.2 343.8 346.2 348.8\n",
       "  * time     (time) datetime64[ns] 1981-01-01 1982-01-01 ... 2010-01-01\n",
       "Attributes:\n",
       "    long_name:     Average Monthly Rate of Precipitation\n",
       "    valid_range:   [ 0. 70.]\n",
       "    units:         mm/day\n",
       "    precision:     2\n",
       "    var_desc:      Precipitation\n",
       "    dataset:       CPC Merged Analysis of Precipitation Standard\n",
       "    level_desc:    Surface\n",
       "    statistic:     Mean\n",
       "    parent_stat:   Mean\n",
       "    actual_range:  [ 0.   59.08]
" ], "text/plain": [ "\n", "array([[[ 5.15, 2.73, ..., 0. , 0. ],\n", " [10.73, 10.12, ..., 1.24, 0.03],\n", " ...,\n", " [ 1.96, 1.6 , ..., 0.98, 0.86],\n", " [ 1.97, 1.57, ..., 1.17, 1.23]],\n", "\n", " [[ 3.34, 1.97, ..., 0. , 0.03],\n", " [ 9.69, 8.94, ..., 1.56, 0.17],\n", " ...,\n", " [ 1.19, 1.07, ..., 0.96, 0.81],\n", " [ 0.96, 0.86, ..., 1.02, 1.07]],\n", "\n", " ...,\n", "\n", " [[ 5.55, 4.71, ..., 0.04, 0.22],\n", " [ 5.06, 5.8 , ..., 2.96, 0.04],\n", " ...,\n", " [ 0.82, 1.28, ..., 1.45, 1.45],\n", " [ 1.2 , 1.24, ..., 1.08, 0.76]],\n", "\n", " [[10.98, 5.96, ..., 0.07, 0.23],\n", " [16.5 , 17.03, ..., 1.68, 0. ],\n", " ...,\n", " [ 1.22, 0.77, ..., 0.77, 0.69],\n", " [ 0.88, 0.99, ..., 0.9 , 0.71]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 8.75 6.25 3.75 1.25 ... -51.25 -53.75 -56.25 -58.75\n", " * lon (lon) float32 251.2 253.8 256.2 258.8 ... 341.2 343.8 346.2 348.8\n", " * time (time) datetime64[ns] 1981-01-01 1982-01-01 ... 2010-01-01\n", "Attributes:\n", " long_name: Average Monthly Rate of Precipitation\n", " valid_range: [ 0. 70.]\n", " units: mm/day\n", " precision: 2\n", " var_desc: Precipitation\n", " dataset: CPC Merged Analysis of Precipitation Standard\n", " level_desc: Surface\n", " statistic: Mean\n", " parent_stat: Mean\n", " actual_range: [ 0. 59.08]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pp=dset.precip\n", "data_c=pp.sel(time=slice(\"1981-01-01\",\"2010-12-01\"),lat=slice(10, -60),lon=slice(250, 350))\n", "\n", "month_idxs=data_c.groupby('time.month').groups\n", "jan_idxs=month_idxs[1]\n", "\n", "data=data_c.isel(time=jan_idxs)\n", "data\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "import pymannkendall as mk\n", "\n", "\n", "slopes = np.zeros((data.shape[1],data.shape[2]),dtype=float) \n", "pvalues = np.zeros((data.shape[1],data.shape[2]),dtype=float) \n", "\n", "for ni in range(0,data.shape[2]): # loop over longitudes\n", " for nj in range(0, data.shape[1]): # loop over latitudes\n", " \n", " info=data.isel(lat=nj, lon=ni).values\n", "\n", " array_sum = np.sum(info)\n", " array_has_nan = np.isnan(array_sum)\n", " \n", " if array_has_nan == True:\n", " \n", " slopes[nj,ni] = np.nan\n", " pvalues[nj,ni] = np.nan\n", " \n", " else:\n", " \n", " result = mk.original_test(info,alpha=0.05)\n", "\n", " slopes[nj,ni] = result.slope\n", " pvalues[nj,ni] = result.p\n", " \n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "data_set = xr.Dataset( coords={'lon': ([ 'lon'], data.lon.values),\n", " 'lat': (['lat',], data.lat.values)})\n", " \n", "data_set[\"slope\"] = (['lat', 'lon'], slopes)\n", "data_set[\"pvalues\"] = (['lat', 'lon'], pvalues)\n", "\n", "data_set.to_netcdf(\"tendencia_81-10.nc\",mode='w') \n", " " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEKCAYAAADAVygjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA420lEQVR4nO2deZycVZX3v7+q3rIvQEJIAgkYQEAIAQGHUWDAAaJDFDfQYRh1RBx4Xx11FIcZx2UYUQTUGQRRGXFFZgTJKCKBF8QNAdl3wh4IgQRIQpZOd9d5/3ielkq456mqTndXp3K+n8/z6apznvvUvfVU9al771lkZgRBEATBUFBqdgeCIAiC1iWMTBAEQTBkhJEJgiAIhowwMkEQBMGQEUYmCIIgGDLCyARBEARDRlONjKSLJD0r6e4q2WRJiyQ9lP+d1Mw+BkEQBAOn2TOZ7wBHbSI7DbjWzOYA1+bPgyAIgi0QNTsYU9Is4Gdmtlf+/AHgUDNbKmkacL2Z7dbMPgZBEAQDo63ZHUgw1cyWAuSGZkrqJEknAScBtKP9JtGevNiUKWOS8o6JE/weWMXXdY1Ny1UwKSyVfZ3Trq/A9pfXryy4XPqWPtnt3+oZY+Rfr9Ln6nrbRyXl5b4etw3l9H0C8F6pXOn1r7fuJVf1xINPJeUzd5nqttH4bf3XWr/a13Wk3wvw31vMf2/l/fjr898La/PfWyt3pF+Hgg9a4Q9QRyf/s24F70VhP7z773zWa3HrbbctN7PtBtTYYU+Nsx3oYpE9V3DDt05GopGpCzO7ELgQYKo67d3lHZLnnXrcgUn5jAXz/WtvWO/q2vY6ON2mrcttUxntbytZW2dSvrrX/6xOuOcXrq48bmJS/tGHkrYagLMP8D8GpXW+QXth6t5J+YSX0v/cAXonznB1a3rT/2jGdT/vtrG7f+XqPnzY6Un5ued81G1TOvy9rq58/w1+P3Z8TVpeHth7q94NacXq5X4fJqW/AwDrJ81KytsrzusA6u12dd4PsUrnOLdJpcAAlQoMbnnNiqS8b+zA7MSo0aMfH1BDB0l7b08nz7IBSW1mVvCraOtjJBqZZZKmVS2XPdvsDgVBEHjMZvQdezOOx1nHaxjXQ+H0deuj2Rv/KRYCJ+aPTwSuaGJfgiAIXCTt3UOF7elib8ZzF6uRNBJ/vDeNpr4Zkn4EHApsK2kJ8K/AmcClkt4PPAG8o3k9DIIg8OmfxQCMoswMumI2swlNNTJmdryjOnxYOxIEQdAgkvaeQRfb8/J+7N6M50qejb2ZKmJaFwRBMACqZzH9jKLM9JjNbMRI3JMJgiAY0VTvxWzKPrE3sxEt8SZM2W4Mp7zztUnd5N1nJeXLf/1b93rrnnvB1U3vTceAPP7TRW6bnc/8T1e3oS0dXzHpYd81d8Wvr3d15a50PMQ/9/mxP6cee7mrK+Jrz/0mKV8z3ndTtoIAoDU96T6OL4hbqqxf4+o89MYPuLr537zF1f18V981WyvTbrbq9F3bNzz9mKvrW7c2KR91+LvcNp6bMsBa570dd91Fbpu2g45xdeW16e9I7zLfO7jkfHcAepYsdnUvPLY0KW9zPusAY07+gqsbDFKzmH5iNrMxMZMJgiBogKJZTD8xm3mZMDJBEASN8ZbdcTJ/5IyizMRsoWjPYenRCCaMTBAEQWOoXMcqWH7OVr9cttVP5YIgCBqlTaJDxfajXNnq7QsQRiYIgqBhSoJyDRsi4eYR3ZoIIxMEQdAgJaBcYyYT85iMljAyHTNmMeOsi5O6inOrV6/zg3FLFf/nx1fveiYpf/85fvbe/7rvOVf31t3TrqXl3Q912zz/ta+7uu32nZOUq+xvv331pbtcXdvjf3R1fU6G4dGrn3bbFDFqbDrN/hr89PvrX/ceV3fOJWm34p8+6Gd1vudXt7q6s/c82tV9Ysy9SfmN273ebTN5Zz81/+yJaffcu/96gdtmyr47u7qHf35nUv6DG323bPiqq/n64kuT8rYpM1l59WVJXdd0P0v0N076rqt78CU/U7THvM/5mcoHg/aS6CgVm5FSRTGToUWMTBAEIwPPwLQa2Uym+JyYyWSEkQmCIGiQklR7uSysDBBGJgiCoGHKEu01rEjEh2SEkQmCIGiQepbLwshkhJEJgiBokMyFudZyWayXQRiZIAiChqkrTmZ4ujLiCSMTBEHQIO2qw4U5rAzQKkamr4fyynRsRqlzTFK+vRPjAbC2Y7SrO/m10xvrG/DeOX48RKUjvXK7ttdPb7/Lud/yX6w3HVNw1zo/od/MXn/1eNJ2fuxF+cX0e77qqnQMBcDD/3uzq5uyz45J+fQTTnTbPD15nqvbZtarXZ3HIX/1Olf3v79/wtV95eaHkvI93jDRbfO99+7v6rToQlfncdZnrnJ1B01Ol5Qo4uBt/Dbrb70+KS91+N+rc477D1f35je/ytW9ZfqkpHzZHX6Mz1P3LHd1g0Fd3mUxlwFaxcgEQRAMI/Usl8VMJiMcIIIgCBqkTdCRR/17Rz3/XCUdJekBSYslnZbQS9LXcv2dkubl8t0k3V51rJL0kVz3GUlPVenmD+7oGyNmMkEQBA1Sd4LMQr3KwHnAG4ElwM2SFppZdY6io4E5+XEgcD5woJk9AMytus5TQHWJ23PN7Mt1D2gIiZlMEARBg5TI9mSKjjpWyw4AFpvZI2a2AbgE2DQ53QLgu5ZxIzBR0rRNzjkceNjM/NrXTWTEGpla08ggCIJm0T+TKTrymcyxkm6pOk6qusx04Mmq50tyGQ2ecxzwo01kp+bLaxdJSntODBMj0shUTSOPBvYAjpe0R3N7FQRBkNGm4v2YjpL6K2NeZmb7Vx3VboOpyc6meZsLz5HUARwD/HeV/nxgF7LltKXA2Y2PcPAYkUaG+qaRQRAETaE/4r9wuaz2etkSYGbV8xnApnEBtc45GrjVzJb1C8xsmZn1mVkF+CbZ/9OmMVI3/lNTxAOrT8innScBzJw5k8q4KYP24l1Fvofmx694VLomuLqOJ9P1S0pTd3Pb9HaOd3U97ekCFm/9+P+4babOnurqfvNR//N5yauPTMp33t2v/zLrjf6EdPWTy5Lyp3/4PbfN7APSdVIAvIpBh91/rdvm7X99qqu7auVOru57M9L35IEH/XiNd3/Tjxn61bvekJS/+mI/ZuhLL/mvpaXpOJ5jHr/PbUNbuqYNwKP7n5CUTx5Vdtv847H+e1v0HVm1If2dm9bpv9bs7j5Xx0Q/ZqxeShKlzS9adjMwR9Jsso3744B3b3LOQrKlr0vI/geuNLOlVfrj2WSpTNK0qnPeCtxduytDx0g1MjWnkfm080KA/ebNi9JAQRAMG6U2UXYCqftRjUAZM+uVdCrwS6AMXGRm90g6OddfAFwJzAcWA2uBP1VHlDSazDPtg5tc+kuS5pL9z3wsoR9WRqqRqWcaGQRB0BRUKhVWmwXqisY0syvJDEm17IKqxwac4rRdC2yTkKenmU1ipBqZeqaRQRAEzaEkFBky62JEGhlvGtnkbgVBEABQaitRbvf3hABKpZHqVzW8jEgjA+lpZBAEwUigVIJSzGTqYsQamSAIghFLHctlUbMsI4xMEARBg6ik2hv/YWWAljEy5sevqPF1UVW8CAsw73oFr6Oeda6uZ/t0zZO+dr+mTekVQcEv0+l046oz/VjWOeUXXd21cw9zdb9dkR7Xb3/7ZFIO8Oo7n3V189/zmqR8+d3+9c44w495+dd/f1NSvuQ9/+a2mVx63tUdPfoZV/fYbtsl5b/4zk/cNqf8ox/zsvrq7yfld377erfNwRd/0dVtePWhSfnKnV/vthnT7n+mt+9rPGrgpZIf39XX41/PK2O8tsePWWsf4jz7pXKJcsH7A7VdmLcWWsTIBEEQDB+lkijVmMl4xnFrI4xMEARBo5RjT6ZewsgEQRA0SKmtRLmj2IW5ZhzNVkIYmSAIggZRXcGYYWQgjEwQBEHDSNm+TK1zgjAyQRAEDVOuZ7ksvMuAljEy8l2IB9G1GUDe9Qrcnin5H0YrpW9BudLjtynqu6PbeUI7npdoj/wyCXvd/GtXt9PH0unkvvodP/3+fau7fd0Ft7i6gfD1z16VVnz2Kt59/J5Jlc44y73eA52zXd1Dz6Qr3x79t29z27y4zr/Ho3aek5Tv/9Fxbpu+FUtd3YaZ6Zs/sSCTcKl7tatr6/Ldkbt709+Rrlbao4jlsrppESMT1KIgDGGrwzMwwebjGZhWQ+XaWZjDxmSEkQmCIGgQ1ZG7LOJkMsLIBEEQNEgW8R97MvUQRiYIgqBB6nJhjkz/QBiZIAiChokEmfUTtjYIgqBBSm1lyu1thUc9RcskHSXpAUmLJZ2W0EvS13L9nZLmVekek3SXpNsl3VIlnyxpkaSH8r+TBm3gAyCMTBAEQYOoVPqTh5l31CpaJqkMnAccDewBHC9pj01OOxqYkx8nAedvoj/MzOaa2f5VstOAa81sDnBt/rxptMxymRc7MtgT1gG9jhdbQ0HcTRFFcTLO9Srmtzn3t+kYD4B/+4SfPn6ft5yalP+/i3/ntuk6+n2urvTcI0n5hsV+3M0P//brrm7uwTOT8qI4nv/4Yqerm1N5ztWd9fr0j8Uzb+tw2/zlrunyAADl59MxL22v2tdtc033Dq7uzwbwRbD2Ua6uvDZdEmE0UBk1gB/ORd8D5/NuBctRsiH22R+c5bIDgMVm9kh2ui4BFgD3Vp2zAPiumRlwo6SJkqaZmR8UlbU5NH98MXA98MlanRkqYiYTBMGgMSADswUiKZvNFB2ZkTlW0i1Vx0lVl5kOVBdLWpLLqPMcA66W9MdNrju13wjlf/1o62GgZWYyQRAEw4Xa2ih1tBefk+3JXGZmn/ZOScg2nYIVnXOwmT0taQqwSNL9ZnZDYaeaQMxkgiAIGqRUEqVSqfCoY7lsCVC9pjsDeLrec8ys/++zwOVky28AyyRNA8j/+uVoh4EwMkEQBI1Sx8Z/HR7MNwNzJM2W1AEcByzc5JyFwN/kXmYHASvNbKmkMZLGAUgaA/wlcHdVm/7a3icCV2z2eDeDphgZSe+QdI+kiqT9N9F9KnfXe0DSkc3oXxAEQRGlcolSe1vhQQ0XZjPrBU4FfgncB1xqZvdIOlnSyflpVwKPAIuBbwJ/n8unAr+RdAdwE/BzM+vPCHsm8EZJDwFvzJ83jWbtydwNHAt8o1qYu+8dB+wJ7ABcI2lXM+sb/i4GQRCk6XdhLjynjqmMmV1JZkiqZRdUPTbglES7R4B9nGuuAA6v+eLDRFOMjJndB8mbsAC4xMy6gUclLSZbZ/z98PYwCIKggHI9LszD05WRzkjzLpsO3Fj1POXSB0DusncSwMyZMxuONymqyTKQ2JWB1Hgpeq3C6w0g7qZccL0fXfmAqzvn6//i6r5x+b1J+agjjnfbVO73Y2h69z06KV8784CkHGDHqRe7urHT0rVXPv7sXW6buz/g13/Z86LvuLqrl6WTJf74Fw+6bSaM9r2Tdt/nDUn5LUvXuG0O2XGsq1vbm44b6bD1bhvKfv+sM/3eqm+Df72Cz2Dh59273FDHwhRQKmcR/0Wojoj/rYEhMzKSrgG2T6hONzNvI6oel75MaHYhcCHAfvPmRbWUIAiGjXpyl0Wq/4whMzJmdsQAmtXj0hcEQdBU6tmTieWyjJE2n1sIHCepU9Jssnw9NzW5T0EQBBtTqjvif6unKXsykt4K/AewHfBzSbeb2ZG5+96lZLl7eoFTwrMsCIKRRqmtjXKtiP9aM52thGZ5l11OFqGa0p0BnDG8PQqCIKifqCdTPyPNuywIgmDE058gs8ZZw9KXkU4YmSAIggZRW5lSRw0X5lrlmbcSWt/IOHEjqhRs9RTWqXBiVAYYAzCQ+IDC13Lk7dbrtvn+R9MxGQCv3rbL1X2gOx3z8vyYGW6bM5/vcXX7PLAqKZ8/Zxu3zWtu9JPOrutJ36sd16Tr1gCs/N5PXd0fF6TjeABmfC/tlf/QdclVYQCeOmxnV+d0nddPTcfjAKzc4MdPjXe2D+S9EP5nCaCvlL5gueLf3wF91sGPCxvo9QYBlWrPZGLjP6P1jUwQBMEgI5VRyTf4+VnD0peRThiZIAiCRimVoJaRiZkMEEYmCIKgccpl1F7swlwrC/PWQhiZIAiCRlHMZOoljEwQBEGj1LVcFjMZCCMTBEHQMCq3obYaEf9hZIAwMkEQBI0Ty2V1s/UamWH8AAykPk0Rg13XYJdJHa6uVPBqduCxSfmvF7/gtjl458mu7shdJiXlUw7/pNvmtW9P9wFg0Z+tSMof+e6P3DY/eecXXN3/PeWvXN1h377Z1Xn89p5lru5Ne0xNyvebNsZt01Hx75VX58WKasYU/BIv93U7LzSwOk0DjqFpEnVF/IeNAUZeFuYgCIKRT7kN2jqKD9WKowFJR0l6QNJiSacl9JL0tVx/p6R5uXympOsk3SfpHkkfrmrzGUlPSbo9P+YP6tgbZOudyQRBEAyUUgmVi41IrYh/SWXgPOCNZLW0bpa00MyqS84eTVbyZA5wIHB+/rcX+JiZ3SppHPBHSYuq2p5rZl9ufGCDT8xkgiAIGqVUqn3UXpI/AFhsZo+Y2QbgEmDBJucsAL5rGTcCEyVNM7OlZnYrgJmtBu7DKVXfbMLIBEEQNEr/xn/RkRmZYyXdUnWcVHWV6cCTVc+X8EpDUfMcSbOAfYE/VIlPzZfXLpKU3uwcJsLIBEEQNIjKZdTWXnjkThCXmdn+VceF1ZdJXHpT743CcySNBX4CfMTM+jPMng/sAswFlgJnD2yUg0PsyQRBEDRIXQkyay+XLQFmVj2fATxd7zmS2skMzA/M7LL+E8zsT26Lkr4J/KxWR4aS1jAylV5Ka9LuqpVRE9Ntij4gfX66cpeiOeFgp/ofAFbyb3VXoYu1/0VZ3ZN2mX3zzuPcNk+u9V/p0nufS8onzdrLbXPXIj/Vf+n4dyXl25/9PbfNP9x0mat77s4HXN21u6YHdv5X/slt85nTz3N1/9qZ/nwu+uvZbpubVo5ydftMTbs+jxnsmidWwcppl3hV/HITA3JvLmgz2GEDr2BwEmTeDMyRNBt4CjgOePcm5ywkW/q6hGzDf6WZLVXmVfBt4D4zO2fjl832bPKnbwXurj2goaM1jEwQBCMCz8C0GqojQWatOBoz65V0KvBLoAxcZGb3SDo5118AXAnMBxYDa4H35s0PBk4A7pJ0ey77JzO7EviSpLlky2qPAR9scHiDShiZIAiCRhmkiP/cKFy5ieyCqscGnJJo9xucZQYzO6HmCw8jYWSCIAgapZ7lsgj5B8LIBEEQNI5KdaSVCSMDTXJhlnSWpPtzP+7LJU2s0n0qT6HwgKQjm9G/IAiCQkplKLcXH1tYPraholnvwiJgLzPbG3gQ+BSApD3IPCz2BI4Cvp6nXgiCIBg5SJkRKTxiJgNNMjJmdrWZ9fsz3kjm+w1ZCoVLzKzbzB4l86g4oBl9DIIgcFEJq3HEnkzGSNiTeR/w4/zxdDKj008qzUJDlFctTSsK4kYo8OevjJqQlFunHxtShOfPP+D4mYG0K2pTEG9Qcn6prez1r/fsmvWu7rXT0+/tnAN2c9v885vf6uoebetKymetScfjADx5xc9d3Ze+8jtXd9x+05LyN0y6zm3z4tkfdnWl7Scm5R++4UW3zXOrn3F181+T7t8RBaUXtul0VciJJVOvUwKAzXBvLo/AZaeoJ1M3Q2ZkJF0DbJ9QnW5mV+TnnE6WTfQH/c0S5ycj/vIcQCcB7Dhjh83ubxAEQd1ImYdZrXOCoTMyZnZEkV7SicCbgcNzX3CoL81C//UvBC4E2G/u3oNdxysIgsDl5SWxgnOGqS8jnWZ5lx0FfBI4xsyq83EsBI6T1JmnWpgD3NSMPgZBELiUytmSe9ER3mVA8/Zk/hPoBBblhX1uNLOT85QKlwL3ki2jnWJmfU3qYxAEgYPqMCKxXAZNMjJm9qoC3RnAGcPYnSAIgoYwqbZzTtgYIOrJBEEQNE7NGJnWcmGWtKukayXdnT/fW9I/19M2jEwQBEGj1F8Zs1X4JlnQfA+Amd1JFjhfk5EQJ7P5qESla3xSVXKmtOpe7V6u1L3G1fVNSLtLb5D/VrYP8metqC7HoHu0FCwJlJV+tTEdfpsf35Z0FgTgjseeT8rPetvebpu9t/Hf92Xd6Td+8cdOddv87L/vd3VFXPJHJx6rgP+65iMNt/m/S+90dTcuedHV3fpEWrfP9n58V2/Ff2+3GZWuT9Oxwf9eFX1uK+1+LRwPK4pTsaH9/VzXclkLzWSA0WZ2kzY2nP4NraI1jEwQBMFwotLWFiezXNIu5L9jJb2drLRzTcLIBEEQNIpKxVlDoNWMzClkcYm7S3oKeBR4Tz0Nw8gEQRA0yp829wtPGpauDAdm9ghwhKQxQMnM/HXRTahr4VLSF+uRBUEQbBXkezKFRwsZGUnbSPoa8GvgeklflbRNPW3r3R17Y0J2dL0dDIIgaCkGybtM0lF57azFkk5L6CXpa7n+TknzarWVNFnSIkkP5X8nDcKILwGeA94GvD1//OPCFjmFRkbShyTdBeyWD7D/eBTw3VyCIAhamXriZGoYmbxW1nlkP9j3AI7Pa2pVczRZeq05ZAmBz6+j7WnAtWY2B7g2f765TDazz5vZo/nxb8DEehrW2pP5IfAL4Ats3NHVZpb2Nw2CIGhxBsmF+QBgcb7fgaRLyGpq3Vt1zgLgu3kS4RslTZQ0DZhV0HYBcGje/mLgerJckZvDdZKOAy7Nn78d8OtiVFFoZMxsJbASOB5A0hSgCxgraayZPTHgLg8m8vMI9Y3dLt1ktD+DrBTE0Hj1Mjra/Q+cFcTQDAQr8mrx6r8MNFlfQT2ZjrIXp+BH63zhqDmubuGDK5Lyk7/5B7fNf33oda5u9650vJP9x/fcNqfM/4aru+jvvu3qdhzdnpTvf8rr3TYTdvFLJcmJASmP8e/Hne1+3MjfH7xTUn75PcvcNhNGpccEcNjsdB2aXQr2g3sn+uN9fp2fotD7apVL/ntRHvLtkHpylwFwrKRvVT2/MM8gD1mtrCerdEuAAzdpnzpneo22U81sKYCZLc3/b28uHwQ+Cnw/f14C1kj6aPYylg5UpE7vMkl/BZwD7AA8C+wE3EdWJjkIgmCrwhCVGjOVfOP/MjP7tHNKPfWzvHPqrr01GJjZwKoyUr8L878BBwHXmNm+kg4jn90EQRBsbVQwKlb8P91q/8+vp36Wd05HQdtlkqbls5hpZBODzUbSMcAb8qfXm9nP6mlX7xpKj5mtAEqSSmZ2HTC38W4GQRC0BlbjqIObgTmSZkvqIMsFtnCTcxYCf5N7mR0ErMyXworaLgROzB+fCFwxoAFWIelM4MNkez73Ah/OZTWpdybzoqSxwA3ADyQ9S515a4IgCFqNvgr0VWrMZGpYGjPrlXQq8EugDFyU19Q6OddfAFwJzAcWA2uB9xa1zS99JnCppPcDTwDvGMgYN2E+MNcs26SVdDFwG3V4rtVrZBYA64F/IEslMAH43IC6GgRBsIVjQA0bU9dsxsyuJDMk1bILqh4bWUqXutrm8hXA4XW8fKNMBPq9iifU26guI2Nm1W46F9ffpyAIgtajgSWxVuELwG2SriNzOngDWer/mhQaGUmrSb+Xoobb2nDSZ2KVdSR17X3eR8F39+wa5bs3r+l10tuXfE+TwtT8jjuy8zIAtBU5tRS5VRa4Iw/oegOg48UnXV17KZ0+fr/XbO+2ueFxP1xr7Jxtk/IVz/v3Y69232337378MVd3z3n/nZSP23Gq26Y8yfcsfex/XvEDFYA13/9/bpsdV6Xd6wHs0vQe7ZRxnW6bpSvXu7pbn16VltPJftPT/xZm9fjXA/99H9uR/q5u6PM/zxri5JRmdcxkWsgKmdmPJF0PvJbs//8nzeyZetrWipMZsNtaMMIYiIEJggbxDEyrUTGjr6Z32ZZPdRqbnCX53x0k7WBmt9a6RmRhDoIgaBCzOjb2h6crQ83ZCVn10P6i1gXCyARBEDRIXRv/LWBlzOwwAEnvBK4ys1WS/gWYB3y+nmsMbY3SIAiCFqR/uazoqCMYc0vin3MD8+dkWfm/Q56ssxZNMTKSPp9nc75d0tWSdqjSfSpPXf2ApCOb0b8gCIIi+pfLio4Woz+53JuAC8zsCrKsAzVp1kzmLDPb28zmAj8DPg2Qp6o+jiwn2lHA1/OU1kEQBCOGbLnMCo8WMzRPSfoG8E7gSkmd1Gk/mmJkzKza/3EML28kLQAuMbNuM3uULMr1gOHuXxAEQREVg74aR2vZGN5Jll3gKDN7EZgM/GM9DZu28S/pDOBvyEoJHJaLpwM3Vp3Wn9a6kJ6K8eyadOzDNqPTE6ExBan5lxekHR/ttFu1wXcRnlDwLvc4n8RygZ+/Kj2urnaNi9QFB/Zbw00QWND3yig/UPiaB5Ym5TfdvmnOwJeZWJCOfsJe6Xt/73Nr3Tb7HHaCq9O6la5u+vffk5SPXup7eP72RL/Ex89vS4cg7DrWX6GY/49+kPeGtvQ9fnyF/16M7fI/uCu709+3gtCVws/FtOdud3W9k9NlCtpK/ud2ZdvEgo5sPnUtibWQlTGztcBlVc+XAukv7CYM2UxG0jWS7k4cC/JOnm5mM4EfAKf2N0tcKnmrJJ0k6RZJt7ywIl2HJAiCYCgwLMvEXHC02Mb/gBmymYyZHVHnqT8kq7D2r9SX+rr/+hcCFwLsuc++cTeDIBg2jK0mTmazaZZ3WXV5xGOA+/PHC4HjJHVKmk1W1/qm4e5fEARBEZVKfyZm/2ixjf8B06w9mTMl7QZUgMeB/tTW90i6lKxeQS9wipn5GyRBEARNoH9JLKhNU4yMmb2tQHcGcMYwdicIgqBhYrmsPiKtTBAEQYP09hk9bob3jFppZ7YWwsgEQRA0SH8wZuE5sSkDtIiRqRis7Ulv3Sx5Jl3DYtakLvd6RTEqGyrp12krqCfT2ea/zeb83GkvyHPwQq/vrzHeqb3RU/Czqsj7o+jX2Ab3l5zfaFynXz3ijCPHJuVXO3VhAA6dNdHVdS78clJ+1CHuai2f+Z3/btzx5Iuu7vjXpuuybD9ud7fNvGuvcXV/tvqppHzDby5325TG+O/tAx9KV+A94bxL3TZfueFRV3fg7MlJ+e1L03VmAHadusbVbZi5aUb5l+l4Mh1rZB3p+kMAE8YObWmLrSXV/2AQCTKDIAgapFZKmVqznHqQNFnSIkkP5X+T1RQlHZXnelws6bQq+VmS7s/zRF4uaWIunyVpXZ478nZJF6SuO1iEkQmCIGiQvgr05Psy3lHZ/E2Z04BrzWwOcG3+fCPy3I7nAUcDewDH5zkgARYBe5nZ3sCDbFwu+WEzm5sfJ29uR4sIIxMEQdAgFWqn+h+EBbsFwMX544uBtyTOOQBYbGaPmNkG4JK8HWZ2tZn15/+5kSy4fdgJIxMEQdAgFat95Bzbn/4qP05q4GWm5jnC+nOFTUmcMx14suq5l+/xfcAvqp7PlnSbpF9Jen0DfWqYltj4D4IgGE76KkZPYTZQ+pfLLjOzT3vnSLoG2D6hOr3OrtTM9yjpdLLg9h/koqXAjma2QtJ+wE8l7blJdvxBI4xMEARBg/Sn+i+inh2ZohyPkpZJmmZmSyVNA55NnFaY71HSicCbgcMt96k2s26gO3/8R0kPA7sCt9TR5YaJ5bIgCIIGqce7bBBcmBcCJ+aPTwSuSJxzMzBH0mxJHWRFHxdC5nUGfBI4Jk/VTy7frr8YpKSdyXJEPrL53U3TEjOZ0WVjnwnp+JW7lK6/0V4Q17JibbpWBsAYJw6loDwNT23w679M6Exf74X1fsq2ckHfX9qQbqei2J+Cn2QTOv2BeWNe4xXJAX744HJXd+ispIdmoZfObUtfcnXTD/twUr77qHVumyN38+vTfOigHV3dlJ7nkvJn29NjguIaRE9ralI+/vC/d9tM/MU5rq57VXdS3vGJdB0cgK/8+9mu7tpV6e9Vl1O3BuBfbvNXYz578GpX98K0fdPygu9Ib61pxmZS13LZ5rsxnwlcKun9wBPAOwDycvXfMrP5ZtYr6VSygmJl4CIzuydv/59AJ7Ao//7fmHuSvQH4nKResrLKJ5vZ85vbWY+WMDJBEATDSYU6lss208aY2QrgFZXozOxpYH7V8yuBKxPnvcq57k+An2xe7+onjEwQBEGD1BNwGUXLMsLIBEEQNIhZ7WDLSF2WEUYmCIKgQfoqVpgPECILcz9hZIIgCBokc2GO5bJ6CCMTBEHQIJVYLqubljcye01Ouwg/4Wcdd92UAXqdD9YzL6VdRIHC4kZ949Mp4p9f67s9zy4oU7Cy23ernDwqPa5ty37fTaNc3aOr033sKPvu0kfuso2r667hEpriwRX+jfzcZXcn5Td8YI7bZvbEdLkB8N2UAXj8zqR46g7+a/GMH5pQmrhdUr5h/J5uG03fxdXN+3Y61b+1+/d3xXd8F+bDXnewq+PVf54UH3RIKttJxpL1vuvzL+9PxSDCzAl+33ec4H9HBoM+i+Wyeml5IxNkeAYmCAYVx8C0GrFcVj9hZIIgCBqkYkZfLJfVRRiZIAiCBumr1GNkwspAGJkgCIKG6e0zNvTWSiszTJ0Z4YSRCYIgaJB6lssGowRzK9DULMySPi7JJG1bJftUXqv6AUlHNrN/QRAEKSr28pKZd4SNyWjaTEbSTOCNZNlF+2V7kKWq3hPYAbhG0q5m5qdbDYIgGGZ6+yp1LJeFlYHmLpedC3yCjWskLAAuyYvqPCppMVkN698XXaiXEs9V0j7zfd3pG72mx0/n76XfB1i+Nm3vXjXZ99lf2+N/GEc7+fK7yv4kc3yHrxutdDr1oniXDWVf17XyaVf3q8fS/Xjr7qkqsRmTuvz3dtWGtPxNu/qxNc+v8+/jMbulY01WFdzf553YH4BK17aubvvZ85LytVdc4LYptftfv1H7/FlS3nfFuf71xox3dXrkjrSiwOV48iGvSAD88vXanJIIj9+BRo1Jqvqm7e5eb6Y5Nx/4O92elP+uw+/7ThPSpQgGi/Auq5+mLJdJOgZ4ysw2/eTXW68aSSf1181esdyvURIEwfDhGZhWo1KpZ7ksrAwM4UymRu3qfwL+MtUsIUveKTO7ELgQYJ9958XdDIJg2Ojpq9BdY7lsiOumbTEMmZHxaldLeg0wG7gjr9Y2A7hV0gHUqFcdBEEwEujf+C8iZjIZw74nY2Z3AX9atJf0GLC/mS2XtBD4oaRzyDb+5wA3DXcfgyAIiqiY1U4rEzYGaLIL86bktakvBe4FrgJOCc+yIAhGGv0b/0VHZTNzl0maLGmRpIfyv5Oc847KQz4WSzqtSv4ZSU9Juj0/5lfphi1UpOlGxsxmmdnyqudnmNkuZrabmf2imX0LgiBI0ZNH/BcdlcaTim/KacC1ZjYHuDZ/vhGSysB5wNHAHsDxeShIP+ea2dz8uDJvUx0qchTw9fw6Q0LTjUwQBMGWRsUq9FWKj0HYk1kAXJw/vhh4S+KcA4DFZvaImW0ALsnb1bruJWbWbWaPAv2hIkNCS6SVEeCEm/Dki2n/+5Xr/fiKsR1+3EhnW/qF7nnWr2uytKDWzKSudLzBuh5/lfCAGRNcXXspXQ9lu7J/q1et919rdM9aV/f+FTck5eV70/EpALZ3yqkwo6ucjm0Y98xdfpupu7m6Z7rTP87Gr1nqtpkg/+fnms4Zrs5sXFJeOv50t83oR37n6nqeeDApV5sf/9H74vOurjQ+HWtUMn+8fXv7qyjll9K1dazPjzMqrX3B1VmH7/pc3i79vv95u38fK2vS92Ow6HdhLiJP9X+spG9ViS/MPWPrYaqZLQUws6WSUgFoqbCPA6uenyrpb4BbgI+Z2Qt5mxs3aeMX+9lMWsLIBEEQDCc9lTpcmDP1ZWb2ae+cGqEe9VAU9nE+8Pn8+eeBs4H31Wgz6ISRCYIgaJC6ZjJ1LJd5oR4AkpZJmpbPYqYBqRKhbtiHmS2rutY3gZ/VajMUxJ5MEARBg9TjXTYIU4OFwIn54xPZOAVXPzcDcyTNltRBtqG/ECA3TP28FeivR74QOE5Sp6TZDHGoSMxkgiAIGqSuejKbX1DmTOBSSe8nSyT8DgBJOwDfMrP5ZtYr6VTgl0AZuCgPBQH4kqS5ZEthjwEfhCxURFJ/qEgvQxwqEkYmCIKgQeqrJ7N5r2FmK4BXZCk1s6eB+VXPrwSuTJx3QsG1zwDO2Lwe1kcYmSAIggaximG1rEiE/ANhZIIgCBrGrPZyWJiYjJY3MtuOTseh7Dyx023zyIt+XMu4jvRb9qrJo902O030427ufvalpHy8Ez8D0Fvw4X7Bqa/yk3uXJeUAb99zqqv76Yt+LZcv35muD/Kt977WbbNj2R9XxUlba91+rE551TOubtroZBYOrM2PMyqt8mMvRq1b4eq6R6ffp6sf9mND4NWuZt4B6di4aWP8r2zX0348Ud/4lJcsVJz3CGD5On+ZfrvOdDzW+oLaRB3XXeTq2qfv4up6XnVQUq7e9W6btucednWDgVUqVPqK92QiQWZGyxuZIAiCwaZSsdob+2FjgDAyQRAEDWMGBckS/nROEEYmCIKgYSoVoy+Wy+oijEwQBEGj1OVdNjxdGemEkQmCIGiQbLksKmPWQxiZIAiCBjEzKmFE6qIljEypJMZ1ptO6T7R0Cv51bX4q8C4nnT/AdqPTryOlEptmlH0V2+7ku9M+tzbtQjprvO8GvL4vfUvnTJ7Gb55cndS1l/wOfvl/73N1P/s/r0vK2wqu19G7zteVnLpJo8a7bUrr02MC4LnH/XZjJyblfWN8l231+q7ty9akXceLMvXe+4zf95/ekc5XWJTK5Py37eXqxj/ym6S8DPTN3j+pm1LxXceNtMt+V986yg/9Pqlbech73euNlV8iwGN1m/+5GDNzXsPXa4RKxajUSCtTczltK6EljEwr4hmYgeIZmK0Rz8BsjXgGZqB4BqbVsDpcmMPEZISRCYIgaBDDau+5xHIaEEYmCIKgYSp90Nc7tAkyW4UwMkEQBA1SX4LM4enLSCeMTBAEQaNYZGGul6ZUxpT0GUlPSbo9P+ZX6T4labGkByQd2Yz+BUEQFNEf8V90RJxMRjNnMuea2ZerBZL2ICsfuiewA3CNpF2HsmpbEARBo1gdM5mwMRkjbblsAXCJmXUDj0paDBwAFPpFmpkbjzCqPZ16fPTqdBwCwB6j/HTlq0sTk/IX1vt28KEVfrzB63dM+/rv2uanlWeV/1pdTkr3o8Ytd9vY+nS5AYD3HLazq/vfWful29z7iiJ9f6Jn/DRX17n8oaTc2v2yDJW2LldXcsZV6RzjtumbsEPB9Va6uh0t7SK+/W5+3M2Rr5rs6tb1pD/PP7rLL23w84eed3Wvm5mOaWrv8WOaJo/2vwfPe2UAZh3CNHsxqRrX53/OVBDvpEo6Bqlj4o5um2WDHAKwKXW5MIeRAZq0XJZzqqQ7JV0kqb+oxXTgyapzluSyVyDpJEm3SLpl+XL/H2gQBMOHZ2BaDbN8NlNwbO7Ov6TJkhZJeij/myz+I+mofHthsaTTquQ/rtqSeEzS7bl8lqR1VboLNqujNRgyIyPpGkl3J44FwPnALsBcYClwdn+zxKWSd8rMLjSz/c1s/2233XYohhAEQZCkUqnQ11t8DELE/2nAtWY2B7g2f74RksrAecDRwB7A8fm2A2b2LjOba2ZzgZ8Al1U1fbhfZ2Ynb25Hixiy5TIzO6Ke8yR9E/hZ/nQJMLNKPQPw17WCIAiagFUqWKV4Sc4234d5AXBo/vhi4Hrgk5uccwCw2MweAZB0Sd7u3v4TlOW8eifwF5vboYHQLO+y6oX5twJ3548XAsdJ6pQ0G5gD3DTc/QuCICjCLDMyRUe+KXNs/7J+fpzUwMtMNbOl2evZUmBK4px6thheDywzs+pNz9mSbpP0K0mvb6BPDdOsjf8vSZpLthT2GPBBADO7R9KlZFa4FzglPMuCIBhpWG8vlZ4NxedUKgCXmdmnvXMkXQOkvHVOr7Mr9WwxHA/8qOr5UmBHM1shaT/gp5L2NLNVdb5mQzTFyJjZCQW6M4AzhrE7QRAEDdE/k6lxUh3X8bcVJC2TNM3MluarP88mTivcYpDUBhwL/MkVNPfe7c4f/1HSw8CuwC01OzwAmuldFgRBsGVS/3LZ5rAQODF/fCJwReKcm4E5kmZL6iCLM1xYpT8CuN/MlvQLJG2XOwwgaWeybYlHNrezHiMtTmZAlDBG4dSjcO5zUTxEeZUfizCmK33BilPPBuCQgpoxy9elYwCmL0vHjAA8M/0gV1fekI6v6Jgw220z8dm7Xd2b5rza1U1f+Nmk3AriULqe/KOrMyemaeW2u7ttxtp6V+fd4+6CMiArvfgPoMRYV7fB8SSasf4Ft83qkv+5uOvZdB2kD78mXcelnx8/lh7c2I7078nJ+PV9rNf/DTp9/bK04lm/ho86/Zim3h33dXWlten3sCg2bYcep3+DRH0b/8X1ZurgTOBSSe8HngDeASBpB+BbZjbfzHolnQr8kqw80EVmdk/VNY5j46UygDcAn5PUC/QBJ5uZH2S1mbSEkQmCIOOEeTOS8mdWpo1WMDAqfb1UeuvakxkwZrYCODwhfxqYX/X8SiAZAW1mf5uQ/YTMpXlYCCMTBEHQIGZ9VAZhT2ZrIIxMEARBg9Sz8T8IcTItQRiZIAiCBqnPhTmiLyCMTBAEQcMMlgvz1kAYmSAIgkapw7ssjExGGJkgCIIGqVT6qPQ6YRM5ZpvtwtwStISR6TWxvCc9lG260r7+bS8uScoBKk68BkB5TbrOy4Y2v27IpDVPuropd1yX7sN+R7lt2gtCaCf2pGMKNoz2+/fIeD8WZocx7a6ue9+/SspHP/eg26YoPsmrGzKmza958thq/yNc7k5fb7vRfpslq7pd3eRR/nshp4urOye6bTY4MU0AO01Mfwa7u/w+bOgzWJ2uXTRJ6XE90+vHruyw/ilXt2x0upbL2F1nuW26Kv57WxSbtmrczKR8StmfKXR3+Z+zQaE/4LKImMkALWJkgiAIhpO6vMvCyABhZIIgCBqmUqnUjJMJI5MRRiYIgqBBrK+2CzPhwgyEkQmCIGiYCMasnzAyQRAEjVLPxv9m5i5rFcLIBEEQNMYNfS88gsanvd4ArK+HytrlAL6r5VZC1JMJgiBojOvpWYutf9E9obLifkqT52BmaZ/yrYiWmMmUBeM70/ayvPLppFzrV7vXs7Hb+a/1YjrmZYofbkBfwfVKBx6TlK/v9GuNTOj1a4CUV6eK50F71zi3zUw/LIjSqqWurs25Zu8k/xceKvhdU0rX5Fnf569tzxrlL0ks703HlHSRjp8B2H/p9a5u7WuOdnVjV6U/Fyvx34u2kh//41FUQ6WI0aPTdWi273vRbdMzeSdXN9a5J0UeVdc/7W+Uz5vmv0/jlQ56XNPnxwwtfak4UHJzMDNre9XR9C27g7adDnmlvq+HyvMPw/oX/MJKWxExkwmCIGiQvoevKnmzmZjFbEwYmSAIggYxMytNnUvfsjs2luezmMrTN8UsJieMTBAEwQBIzWZiFvNKwsgEQRAMgE1nMzGLSdM0IyPp/0h6QNI9kr5UJf+UpMW57shm9S8IgqAW1bOZmMWkaYp3maTDgAXA3mbWLWlKLt8DOA7YE9gBuEbSrmYW+RmCIBhx/MnTbOkfse7V4VGWoFkzmQ8BZ5pZN4CZ9fvdLgAuMbNuM3sUWAwc0KQ+BkEQ1KTv4atK9G2IWYxDs+JkdgVeL+kMYD3wcTO7GZgO3Fh13pJc9goknQSclD99afyY0Q8MYX+r2RZYPkyvNZy04rhacUzQmuMazjH5AUADwLLgoMaDnrYShszISLoG2D6hOj1/3UnAQcBrgUsl7Uz6RiWju8zsQuDCwelt/Ui6xcz2H+7XHWpacVytOCZozXG14piCjCEzMmZ2hKeT9CHgsvwXwE2SKmS/ZJbARiHSM4B0yH4QBEEw4mnWnsxPgb8AkLQr0EE2VV4IHCepU9JsYA5wU5P6GARBEGwmzdqTuQi4SNLdwAbgxHxWc4+kS4F7gV7glBHoWTbsS3TDRCuOqxXHBK05rlYcUwAoSoQGQRAEQ0VE/AdBEARDRhiZIAiCYMgII1OFpJmSrpN0X57u5sNVui02DY43LklzJd0o6XZJt0g6oKrNiB6XpC5JN0m6Ix/TZ3P5ZEmLJD2U/51U1WZEjwkKx3WWpPsl3SnpckkTq9psseOq0n9ckknatko24scV1IGZxZEfwDRgXv54HFnp1D2Aw4BrgM5cNyX/uwdwB9AJzAYeBsrNHkcD47oaODqXzweu31LGRRZTNTZ/3A78gSzu6kvAabn8NOCLW8qYaozrL4G2XP7FVhlX/nwm8EvgcWDbLWlccdQ+YiZThZktNbNb88ergfvIMg5s0WlwCsZlwPj8tAm8HJM04sdlGS/lT9vzw8j6fnEuvxh4S/54xI8J/HGZ2dVm1l/S80ayGDLYwseVPz8X+AQbB15vEeMKahNGxkHSLGBfsl9c/Wlw/iDpV5Jem582Haiuu+umwRkpbDKujwBnSXoS+DLwqfy0LWJcksqSbgeeBRaZ2R+AqWa2FDLjCkzJT98ixgTuuKp5H/CL/PEWPS5JxwBPmdkdm5y+xYwrKCaMTAJJY4GfAB8xs1VsnAbnH8nS4IgG0uCMBBLj+hDwD2Y2E/gH4Nv9pyaaj7hxmVmfmc0l+1V/gKS9Ck7fIsYExeOSdDpZDNkP+kWpSwx5JwdAYlx7k6WZ+nTi9C1mXEExYWQ2QVI72T/iH5jZZbl4CXkaHDO7Cdji0uA44zoR6H/837y8HLHFjAvAzF4ErgeOApZJmgaQ/+1f2tyixgSvGBeSTgTeDLzHzPr/4W7J41pAtt9yh6THyPp+q6Tt2QLHFaQJI1NFPjv5NnCfmZ1TpfopW3AanIJxPQ0ckj/+C+Ch/PGIH5ek7fo9rCSNAo4A7ifr+4n5aScCV+SPR/yYwB+XpKOATwLH2Mbp5Lfkcd1mZlPMbJaZzSIzLPPM7Bm2kHEFtWlWWpmRysHACcBd+doxwD+xZafBAX9cHwC+KqmNrOTCSQBmtiWMaxpwsaQy2Y+lS83sZ5J+T7ac+X7gCeAdsMWMCfxxLSbztFqU/WbgRjM7eUsfl3fyFjSuoAaRViYIgiAYMmK5LAiCIBgywsgEQRAEQ0YYmSAIgmDICCMTBEEQDBlhZIIgCIIhI4xMsMUj6aXaZwVB0AzCyARBEARDRhiZoGVQxlmS7pZ0l6R35fJDJV0v6X/ymiw/yLMgBEEwxETEf9BKHAvMBfYhyy13s6Qbct2+wJ5kqXR+S5YF4TdN6GMQbFXETCZoJf4c+FGe7XcZ8CugvyzDTWa2xMwqwO3ArOZ0MQi2LsLIBK1E0RJYd9XjPmIWHwTDQhiZoJW4AXhXXhxrO+ANRObeIGgq8WsuaCUuB15HVhvegE+Y2TOSdm9ut4Jg6yWyMAdBEARDRiyXBUEQBENGGJkgCIJgyAgjEwRBEAwZYWSCIAiCISOMTBAEQTBkhJEJgiAIhowwMkEQBMGQ8f8BgebjOOA/3nUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#plot correlation\n", "dset_2 = xr.open_dataset(\"tendencia_81-10.nc\")\n", "\n", "tendencia=dset_2.slope\n", "pv=dset_2.pvalues\n", "tendencia.plot(robust=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaUAAAEWCAYAAADGjIh1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACAHUlEQVR4nO2dZ5gURROA39q9nAlHDkfOOWcQlQwGFMw555w+FbOYM4oKJgQRFBBRQQUVCZKRnI6cw+W829+PXWDvtudu724vIP0+zzx3U9PdU7M7OzXdXV0lSikMBoPBYCgP2MpaAYPBYDAYTmKMksFgMBjKDcYoGQwGg6HcYIySwWAwGMoNxigZDAaDodxgjJLBYDAYyg3GKBnOGESkr4jsLeFzXCEic0vyHAaDwRpjlAx+QURSPDaniKR77F9R1vr5ilJqklLq/KLUFZFgEflQRA6JyHER+UFEanocf05E/hWRHBEZ40N7+ZYXkctFZJeIpIrIDBGpWBS9DYbyhDFKBr+glIo4uQG7gWEeskllrV8pcQ/QDWgN1AASgHc9jm8DHgZ+9LE9y/Ii0gL4CLgKqAqkAR8UUW+DodxgjJKhRBERm4g8KiLbReSYiEw9+UYvInEiokTkGhHZLSJHReQJj7qhIvKZiJwQkQ1Apzxt1xCR6SJyRETiReRuj2Nj3Of6QkSSRWS9iHT0OF5bRL5z1z0mIu+55deKyEKPcm+LyB4RSRKRFSLSK5/LrQf8opQ6pJTKAKYALU4eVEp9rpT6CUj25bMroPwVwA9KqT+VUinAk8BFIhLpS9sGQ3nFGCVDSXM3cAHQB1fv4QTwfp4yPYEmQH/gKRFp5pY/DTRwbwOAa05WEBEb8AOwBqjprnuviAzwaHc4LsMQA8wCThoeOzAb2AXEuetPsdB/GdAWqAh8DXwrIiEWZT8FeriNZRguw/GTRdni0gLXtQOglNoOZAGNS+h8BkOpYIySoaS5BXhCKbVXKZUJjAFGikiAR5lnlFLpSqk1uB60bdzyS4EXlFLHlVJ7gHc86nQCYpVSzyqlspRSO4CPgdEeZRYqpeYopRzAlx7tdsZlIB9SSqUqpTKUUgvRoJT6Sil1TCmVo5R6HQjGZUB1bME1dLkPSAKaAc8W9AEVkQggMY8sETA9JcMZjTFKhpKmLvC9iCSISAKwEXDgmgc5yUGP/9NwPXDBZTj2eBzblafdGifbdbf9eAHthriNYW1gl1IqpyDlReQBEdkoIonuc0QDlS2KjwNCgEpAOPAdPvaU3MOLJx1D8hsiPEkKEJVHFoWPQ4MGQ3kloOAiBkOx2ANcr5T6O+8BEYkroO4BXAZkvXu/Tp5245VSjYqoUx0RCcjPMLmNwyO4hgbXK6WcInICEIsqbXD1Co+7678LPCsilZVSR/NTSCnVIr/jGtZzuueHiNTH1YvbUsh2DIZyhekpGUqaD4EXRKQugIjEisgIH+tOBR4TkQoiUgu4y+PYP0CSiDzidoiwi0hLEemkbyoX/+AyeC+LSLiIhIhID025SCAHOAIEiMhTePdOPFkGXC0i0SISCNwO7D9pkEQk0D0fZXO3F+Ke39JSQPlJwDAR6SUi4biGCb9TSpmekuGMxhglQ0nzNi4ng7kikgwsAbr4WPcZXEN28cBcXPNCALjniYbhckKIB44Cn+AaXssXj7oNcc0B7QVGaYr+gmv4bYtbjwxyDyfm5UF3ma24DNlg4EKP4x8D6cBlwBPu/6/Kpz3L8kqp9cCtuIzTYVwG9PZ82jIYzgjEJPkzGAwGQ3nB9JQMBoPBUG4wRslgMBgM5QZjlAwGg8FQbjBGyWAwGAzlhrN2ndLAgQPV0aP5Lh0pVbKysggKCiqx9hMSEti3bx9ZWVlUqFCBypUrk5aWxqFDh6hfvz5btmwhLi6OChUqaOuvXr2ali1bEhBgfcuU9DWUBuYayp789D927BgHDhwgNDSU1NRUsrOzcx2vXLkydevWPbW/c+dOAOrWrYuI1fKyglmxYsUvSqmBRW4gDyJStQpBBw+TFaOUyhuZ4+xGKXVWbh06dFDlifnz55fKeRISEtSYMWNUly5dVLNmzRSgIiIiVMOGDdWhQ4cs60VERKgTJ07k23ZpXUNJYq6h7MlP/8cff1zFxMSo2rVrqz59+qipU6eqjRs3qtdff11NmTJFORyOXOUTEhJUx44d1aRJk4qlE7Bc+fH505ooVYsQ1Ylo5c92/wvbWdtTOluJjo7m6aef5umnnwagQYMGHDlyhMWLF1O5slX0HKhduzZ79+4lJiamVPRUSpGQkGDZczOcnbRq1Yru3btz4YUXcujQIaZOncqMGTMICgpiy5YtzJ8/n6ioKPr27cv555/PwYMH6dOnD5s2bSpr1U8hIlUrE8QIqjKDg4hItDK9pVOYOaWznH///ZdOnTpx8803k5GRoS1z8OBBduzYQXh4eKnp9dhjj1GlShWGDBlyaohm6dKl5OQUGK7O8B+mXbt2/Pnnn8ybN4/9+/dz8cUXM2jQIHr27EnLli357LPPsNvtPP3000RERNC6dWvefPNNVq5cyYQJE3A6naSlpfHKK6/QqVMnFi7UxuHNRXp6ul+voTVRB9sQRQA2mhNJJ6IT/HqCMxxjlM5ywsLCmDNnDhkZGbz88svaMosXL+bcc8+lXr16Ja5PVlYW//vf//juu+9Yvnw58+fPZ9++fXz99dd07dqVyZMnl7gOhvJL48aN6dSpExUqVOD9999n9OjRXHnlldxwww0MGjQIgBdffJFly5axbds2UlJSmDp1KuvWrePNN99k+PDhdOzYkb///purrrqKq6++GofDYXk+pRTXX3+93/QXkar7yaA+YQA0IYIdpCEiBUYiOVsww3cGgoOD+fDDD+nWrRsNGzbkyiuvzHU8JSWlVHoo8fHxjBo1itjYWBo0aEDnzp1p0KABcXFxjB07lj59+jB27FhsNhvNmzenXbt2Ja6ToXwhIkyYMIGOHTvSqFEjrr76apKSknj//feZMGECXbt2PeXQUKtWLQAuvvhiLr74YpKTk5kyZQrh4eFcfvnlKKWYNWsWjz76KK+++qr2fMuXL2fJkiV+0781UQdjCcLmjulrR2hGJJk4ErAO9HtWYXpKBgDq1KnDvHnzePjhhxkxYgTffPMNa9euZdeuXcyaNYvhw4f7/Zx//vkn7777LsHBwbRp04YuXbpwxRVX8Mwzz/DXX39Rp04dHnroIe677z6mT59O//79GTp0KD/++CMDBgxg5syZftfJUP6Ji4tj6tSprFmzhq5duzJgwACys7P59ddfmT9/vmW9yMhIbrrpJi6//HLAZeD+97//8cknn1i+dG3atImGDRv6Re+8vaSTNCWC7aa3dArTUzKconnz5vTs2ZNffvmFY8eOsXXrVrKzs2nXrh2ffvopt9/un3ifSimeffZZJk6cSNeuXfn4449p1aoVERERZGZmcv755zN27FjuvPNO7rjjDu6//34WLVqU6+GwfPlyhgwZQu3atWnfvv2pdlNTU4mIiMh1vhMnTnD8+HGSkpJITk4mJyeHhIQEQkJCmD59Ovv37+fLL7/M19HDUL4455xzOOecc3j77bd58sknGT16NB07diy4Yh7mzp1LQkICx44do2rVql7H33nnHZ599ll+/fXXYuuct5d0EjtCc9NbOoUxSoZcdO7cmfj4eBYuXIhSiiVLlvDxxx/z77//8u+//9KqVatin2P27NlMnjyZpUuX5noQOBwO2rVrx/PPP891113HnXfeSe/evXn++ee92ujYsSMXXXQRF1xwAZUqVSItLY29e/eSlZXFvffee2qYb8eOHTRt2pRatWoRFRWFw+Fg3bp1AMTGxtKlSxfmz5/PkSNHjFE6A7nnnnuoUKECzz//PD/9VPjM89deey2vvPIKK1euZODAgYgIv/zyC9OmTeOmm25CRHB5hBePkx53XYjRHm9KBN9xwHjiYYySIQ8BAQF06tSJ+Ph44uPjOeecc+jWrRvvvfceV199NQsXLiy2F97ixYu5/PLLvd5Md+7cSUJCAtdddx2ffPIJAPv378fhcGC3e6cdGjt2LLfeeisOh4PQ0FBq1apFdnY2Q4cOpXPnznTp0oUff/yRe++9l1deeQWAffv20ahRIz766COuvvpqatWqRXBwcKl6Fhr8y6BBg7j77ru1L03r169n8eLFiAjDhg2jSpUquY43btyYQYMGMXLkSNq2bUvNmjWZPXs2vXr1okuXLtSoUYNrrrnGH2o+1IYor17SSU72lhZy/C7A+y3sLMIYJR+5L0DveXbnHfrUQLVGDNbKVZbe7Rp7HXL2rvcSq4AQbXFnmH79jgoI1sqTc/Q/huj1ud8u+8bCs099ybhx4wBYNX08rRrX59Y+TVnxW1UuPL8Pje75iIBA7xX3F0RkEL/sd6rFViYwMPCU3Jae+8Vv9aI/uGn0CI4lp+WSL1u1hgYNG+E4uI3HHnmYhbO/5aExL/HZu69xzaiLyImplat8UGAgTRo3JjXH9SabBRBoZ9qsH1m6eBFbVy9l3Osv0b9PL7KO7gUgNhhevOkSbr/lJmw2Yd4P3/PIZYOJ3fYHt9Z9ku6vPcCt/a7NdZ43Z96v/ewAbP2v08rtm/7UylUdfU9T2fU/xbyf3UkkJ0uvUPJRyEjDse633O1XqKEtnlEhTisPdOrbl5xM/XkBlFMrdgZH6uUW+Q2V00lGWqqX3J56TFs+MiKWt99+m379+jHugw8YNmwYTqeTm2+5hZ9++okhgwdz5MgRPv/8c37+6SdsNhshoaG52njllVeoXbs26enpPPLII9SvX5/ffvuNiy66iMmTJ3s5/xSBc/POJeWlKREs5PgFnOVGyTg6GHLRvH5tNk9/n8oVomlWvw4Db36E97+egVKKoX27sXjVehZ89ALKmfsBlJmazM7de2l37gWE1WvDVXc8xJfTZnqFgfn5z8Ws3riFmlVjvc4958fZdO/ZC4CObVuxedt2bDahuqZsfgQHB9O7bz/uve1m+vfp5XX8tgvP5+icT9k340P6tG3OZ3MWsOfw8UKdw1C+GHXppcycMYPb77iDzZs388MPP7Bh/XpWLF/O+PHjmTZtGgkJCcybN8+rbrt27VizZg3Dhw9n1KhRdOjQgQoVKjBy5EhsNtspx4hi4rDqJZ3E7jpu5pTKWgFD+SM6IpyDf04HYO3mHdz67Bts37Of6rGVGNSrM7+uX82c1x6g3bCria3XhMWT3mXD/Fl0eecNPn3jBTZs2U71qrF8+vW3TJ/9C9PefpagoEAm/zCXR8a+xzP33kSHlk1JyHPeH2bMoHnLlhy8+HxuveYKbnv4SdIzMujZufAT2L5QITKcDx68gZvHjmfmX8tK5ByG0qNDhw489thjXH3NNRw8cIDx48dTrVo1AOx2O5deeilz581jwIABuerdcssttGrVinHjxmmHiYsTM8+TIJsP7eg7m2cVpqdkyJfWTerzzuN3MX3unzSuW4tv5/5J50tuISstlelPXsfH1/YlPSWRq9+bRVhYKE+89CbfzZnL5O9n8+OXHxFgtzPo+nsZ8/bH3P/CW8yZ8CY3XDJc+0Ofv3ARkZGRzPhpHoPP7cu4V57jn1++JywsVKOZ/+jUrAHzV65nH/5duW8ofW65+WaSkpK45557vIxP/fr1Wb16NQ6Hg5SUlFPymjVrUq1aNVauXFmiutml4M1gjJLBBypGRZKclsb4b2fTvGFdlHIy9LG3uXHCfG6cuIC+Nz7Giu8ncvDwUaZ89BZLfpwKwHX3Ps7rYx5hyap1JKWkMvuTN2jZuIHleWrXqcMtt93OS29/QHpGBkPPP4f6deuU+PX1aduMzOwc/uI4J8gmGRPK6EzFbrfTvXt3KlWq5HWsS+fOLFq0iGbNm9OxY0eyslzzZi+//DIHDx48tV9iuokUuBmMUTL4QP3aNVg29UP2Hz7Khm272PTHbD6+pg+b/5pDQFAQWxb+zPalv9KsUX1aNm2E3W5nUP8+/LJgIbVqVCeuVnUuHXwuHVo2LfBcvfv2I7ZSJdZv3loKV+aicZ0ajL3tcnJwYgO+4wDb8J5oN5wZNG/enOXLl3vJN2zcSHR0NG+9+SYNGzbk7bffdsk3bOC5556jR48eJapXkE0K3AzGKBl8pEHtGqycPp4TS2ZxwVMfcunYr1gy+QPeu6Q9VRo0Jz05kfT0056FLRo3pEWThtz+6DMcS0giIEDvaZUXpRT7Dx6iamzprRnKzslh0AMv0ZWKRBPIUKryN8c5iIWnpKFcM+rSS/l+xoxT69EADhw4wE033si3U6cyePBgrrjiCpYuXcpdd93Fl19+6eUqXhKY4TvfMI4OPnLHrZ208opN47Tyo3/9rZWnHzmhlavzLiF79QIv+a4Z3t5CAPVffk8rzwrQz79U2P6HVn7sL+9znsQeok+09j+Hazb22luGctMXc0ib9BTZ6akc3LmfO0c+BIATxWb2s2L1v5xHLBMueoYJedp554h3hGalFEEhoXz8/Twee+J/gGtRrc1mA4d+EWNqtn52OMrKRTkjdy/owJHjZGZlUxtXlJdKBNGPyszjKJdTEznvJm07AIM/9n4jB/ix8T6tXBL1bs0SrHf9z9q/Uyt3pKdp5aH9R8GBXV4u4Fau32kWn13k/LzflouArtbhpuxp+ns759AurdyWk62VqwSFY+abXvITOw/odcpzn0YDzw/sxMhLLmHWD7Np2LAhTz79NFdfcy09evXGCVSsWJFFixaRnZ1NrVq1GDZsmOV1+QszPOcbxigZtFgZJE/a1q7K+5cP4Od125l5x0gSPDreNoQhxPIDhwnFt14SuDydFvz1Nz26dmbWjBkcPnyYEyeOU61aNS4ZNZqnn3nWb95QJwmw22lYswqrtiXQzy2rQygKxT7TWzojubhDU7K7DOGcfn258aab+OXnX5jnESpowIABTJo0ifDwcPr27ZtrXV1JEWiMkk+Y4TtDsehcrwZPDetFtwa1vI5FEURnYliC/g3aitgqVViw8G8+mfgZi/9ZxpETicz+6Rd+nTeXr7/60l+qAzD596W0vekpmtSuRhuich1rTAR/ccwygrShfHPDjTfyx59/sXnzZmw2ITo6d7zTfv36kZOTQ82aNV098RLGDN/5hukpGUqUuoTxJ8dRKKQQ6wJr1KhJjRo1T+3Xb9CAjz75lBFDhnD8+HFSUlKoUKECW7duRQKDuPuBh4mpULHQ+u0/lsBl/bvy1u2Xce/8F3Md60oFWhHJZ59/Tlh4OHfkCUjrdDpRSvm952bwH/Xq1WPSpK954fnnuejCC/lxzpxc2ZMTEhLIycnhhx9+YNiwYSX6XZrhO98wPSVDiRKEjSBsfnGzbtGiJS+OHcumjRsB2LZtG/Xr1+efRYuYOX1aodtzOJy8PvVnzmvf3LJMOAHM+fFHxo4dS89evbj/gQe46eabadioEdExMfz99MVsnDyWw6v/wJGdTwgeQ5ny+BNP0Kt3L3p078YKD8+8wYMH89xzz/Hggw/y1ltvlagOpqfkG6anZChRjpCJQKHmlfLj0lGjuXTU6FP72dnZvPfuu3Tv1bvQbdntNq46vzsf//gngzpbRz+vW7cuFStW5PrrrycpKYn169cz9ZtvaNGiBQNfm8OBf35m05RXQISq7fpRs+cF0LgoV2coKUSEl18eS5cuXbjoogt54403uOqqqwC48sor6d27N02bNuWWW24hLCz/GHVFxbh8+4YxSoYSxY4QgBBYQp3yKV9/TcPGTWjYuEmR6j9/3UUMfPQNOtz6LGkk0E1TJi0tjV27djF61CivB1ZYldqkH9tPnXNGUa3TAA4u+4VV79/HT2FX5mvoDGXDhRdeRLNmzRk+bChZWVnccMMNAFSo4ApwnJWVdeo7PnHiBKtWrWL9eu9AyUXBDN/5hjFKPlLr1c+1cqfFPElyun64yubUuzUfWryIt8PbeslveEMfhXrixiNa+YVN9S6+9qZ9tfLj73yglQPEtmuklYtdb2Bqt2nB2yn/5pI5HA6q1ajJc3PfoWJMbkcCh0Vk7LDk/ZY65WXr6n8YPvBcqgV7X3cq+rVOGd2uyLV/3cNRvPTM01RvFEhElQjemHLLqWNzV2+hQdPmdB04grl7MyCPN97an37j2LrFqFrnk7p2HwS3JLJjBFe/9RUDb61L2/65XagfDt+g1WlJrHfgWICK9fVeYfVi9N6R664cQfrgkaz7MLdLdZV29bXlt/+4ViuftETv0g5vW8jhg21TtfLU1fq4giE19ZHLj+yy8dFTX3jJt6QULuJC+2et8yvN/2c+5557Lrt27eKRRx5hx44dNGzYkJiYGHbt2sXrr7/Ol19+ScuWLWnZsmWhzmuFGZ7zDTOnZNBiZZAKi91up3KFaA4eLZko3IePHdOGlPGFgwcO8M4br/H4Q/fzxDPPkZyRSVpm7gffsq276Xr+MG4Z87pFK4JIADaPlCGBFeO4/rXPmfvxa8Sv+adIuhlKlkaNGrFw4UK2bt1Ko0aNGDduHA6Hg4svvpj27dsTHBzMhg0b+Ouvv06lcSku/oroICIDRWSziGwTkUc1x0VE3nEfXysi7d3yJiKy2mNLEpF73cfGiMg+j2P63DulgDFKhhJl1+7dHDmeQKO63i7j/qBBXF02btqsPXbw4AEGnncujz3yENOnfUtycjL79+/nvbfeYNSFw+nbtRO7d+3ki2+mMXjYcGY8ei0Jqemsij/dS1i0eRfNO+oG9VzYQiJx5qTjyEjOJa9StyFt+g/ju9ceZ9Pi3/1zsQa/Urt2bSZPnszs2bNJTk6mRo0a9O/fn127dvHqq69SvXp1v57PH44OImIH3gcGAc2By0Qkr6fOIKCRe7sZGAeglNqslGqrlGoLdADSgO896r158rhSak7xrrboGKNkKFGqVqlC47haPPnOpyXS/rm9ezBj5ixSU71j1WVn57B0yWI+/fhjvpk8mZbNmtCnRzd27Yzn6utuYMX6Tbz29nu0bdcegOoVIgm029mw59CpNiqEh3Jorz4iAYDY7ITV60Hqhh9zyZ1OJ1uX/03DDj348YMXcTocfrpig79p3749kyZNYt68edx+++1ERESUyHn8FJC1M7BNKbVDKZUFTAFG5CkzAvhCuVgCxIhIXgvbH9iulLK+ucsIY5QMJUpqair7Dh3l4vP7lEj7Pbp0pE3rVrz7gfcQS+3atZk0+Rv6n3seU6d/x4pVa/j2uxm8+ta7DBk+gvA8D5/l2/ficDoZ3bPtKdnjI/sza+IHzP9+sqUOIbU7kHl4Sy7Z6l9nEhgcwrC7nyYwOIS9m9YU70INZzw+9pQqi8hyj+3mPM3UBPZ47O91ywpbZjSQ96a+0z3cN0FE9KmtSwFjlAwlyrPPv8DF5/ehU6uCI4QXheMnElj77zrq1K6tPZ6WnkaoO/V15dhY2rZrZ9nWxj2HCQsOwu6xur957arc/fJ7fPHqGBKPH9XWyz6xm5A6pxMRKqX4Y9KHnH/jA9hsNhp36sXW5fpYiIazBx/nlI4qpTp6bOPzNKPrTuX1nsq3jIgEAcOBbz2OjwMaAG2BA4DVJGqJY4ySoUTYtGkzj//vSb77fgZj7tR7EPqDN8Z9glKKC4brA2rGxdVj27atKKX3evRkx6FjBGmimbfs0ouGrdqzYdkiADLT01FKkZxwAuV0kHVkCwHhp50tck7sdp27lctQNezYi23LvYPPGs4u/DR8txfwfAOrBeR1Vy2ozCBgpVLq1Di1UuqQUsqhlHICH+MaJiwTjEu4j9gT9W7KtuBwrbyahbtzWpB+YV5seCADO+XtYVtzXSO9q7AzSP+ekZajdxVv8OYn1ifJ0bvg/puuH3N3bFlJYo4Np9PJ5ddcR/eevZg07XtiGtXRZnm2J+g/06Sf9a7F23/wdi0e7nCw1p7N/YP788x5XXIdq3nVNXSJyiD52GFqV61MvVrVWfLNh+yv3lXb/jnn9CU+PZOAFk29ws0Mu+ZWPn3hMdr3PpeHLzmP5ITjOB0ObCERODPSqNerL8kH5tNm9L38/c5XBDfvz+wlrhEUZ3YV9u3Ywve/r+etddu0527eO0Yr//I6fSp4mZf3BTp/Xh3zs1betWLhsvr2qGRdPmPlAq3cFqT/Lbwx+l2tvP17D9N0kHcyyAtq6keUDq3Ru6/vW6/v2ZYVNv+sU1oGNBKResA+XMNwl+cpMwvXUNwUoAuQqJTyDLF+GXmG7kSkukeZC4F1lBGmp2TQY2GQfCE9PZ1tW7fw/Muv0Kat9XCZP8hwOMjIcfDZio1kZHuvDQsLDWHa28/ROK42m+P3kJpunfK8f+c2ZOc42Hckd3qJ5IQT7NqygaiKlfjk+Uc5vHcX977yIRMWbqT7XWOp3KQ9236dypEta5h1zyACQyOo3vOSU/VtgUFE1mnB0TW/oSzSaRj++9iDbAVuBaGUygHuBH4BNgJTlVLrReRWEbnVXWwOsAPYhqvXcypoo4iEAecB3+Vp+hUR+VdE1gL9gPuKeblFxvSUDH7n0QfuIzAoCKfTid3un/BCADP37OfzHbuweQx3JGZlExXhykW0fN9hesZ5L8gc895Ehp3Tg0WTPyAwMACr92cRITw0mNe/nMHr913PscRk5i1dzdMTH6BO4+ZERldAKUXdxs2p1aAxNrudSvWa0+ueV1FKkZ2eijMni5Coiuzam5Sr7eo9L2Xn7HdxBlYgquMVFhoY/stYLTovLG537Tl5ZB96/K+AOyzqpgFeC/uUUlf5RTk/YIySwa8c2L+fpUsW06p1G06cOE7lyrF+a3tvWjo9YitxUZ2aOJTCoRQ2hEbt4uj03lRmbYg/ZZSSM7P4dNqPfD7jZw4ePc7Hzz1EYGDBt3tcjap8vjWe3jc9xs79h+jQrCFX3P8k7Xufm28EaREhKMzalTi6flsajnyMjZOeLfyFG/4TiAnp4BPlyiiJyEBccUzswCdKqZfzHBf38cG4Fn5dq5Ra6T42GngYl3/+W6WptwGSEhI4dOggo0eP4urrbiA9LY2+3btw34MPc8vIQUT6Ye1HjbAQXt+wlf3pGbzeofUpeZWIMC5p2YBftu6m54bqNI2twAM/LqRO0yY8cN0ohvTp5nM6drvNxk/vjOG3ZWsIDAjgvC5tmR6izzpcWDJPHAAxI+ZnK/ZA/40a/JcpN0bJY6Xyebi8R5aJyCyllGewMM+Vyl1wuTGenN0eDXQCJolIhFIqpdSUNzD503G0b1qPGT/+TOMmLvfvYRdcyH133sauDat5Z+zz5OTkkJaeTnRUVAGteaOUYl9aBplOJ38e9h6Ae21oL/49eJTbvl9AcICddjVimfTuc0VK3hYcFMjgHnoHg6KSceIA8T+8Q0Tby/zaruHMwWZ6Sj5RbowSHiuVAdyeIyMAT6N0aqUysEREYjy8Rk5+4wq9n76hBFEowsLCTxkkgI6dOjP9hzlcOPBcYhu2IioyguSUVMa/9QoXDh1UqPazHU6+3LGLb3t1sXSdbVWtMgtvG3lqvzSyifrKtm9eoEbPS0kLrlfWqhjKCDN85xviy/qN0kBERgIDlVI3uvevAroope70KDMbeFkptdC9/xvwiFJquYhcA9wLfKWU0i78cq+OvhkgLi6uw8SJE33WTzn95DVl8UBNSUkhIlzvXl6o5rP13mXKI2BoLrnNekjB6tbYsPtEnnJOsk/soU7dOI5mebfXtGo4OTk5ZGdn43Qq4nfuJCAgAHt6JhXt3kktgkO835WcCramptCyemWvuR1HVrZWT7vFHFJAuLVbcwqBRJC7PUeGdfK+gIpVtPJER+7P4ciBfaSlJEFAMDZ7ALaAAGwBQQSFRwJCRoY+qrzd4kHWpKL+2lRAECmpaUSE51l64NS3LxaJCVVmhlZudf8CZIbrA+MGWFSxaxcKQEpaujbUj8Miwr7dIpCpVXmAgEI6HfTr12+FUqrI3WcRWTG/Q9f2BZ5nxZKVSqkORT3Pf4Hy1FMq1kplpdTngD6/xMmCrtXR4wE6duyo+vbt67NymanJBRfyAWXTf+SLFy+mW9cu2mOFIWjvaq08p6o+31BOkH6uJzufH/R1X+TO8pq67S/Sd6/g9bFPM2FLiFf5hUNz/8aSktpQq34j2qlgDjmzeDiqDhEexrFqU++UE0opfj66h7k2Gx9feh42jwdRskesOk/Cq+kfkpU7t7G8tiWqGl3lYG59d221LF+p151a+c+JMbn2q9RuwZa1K/lu4VrSTxwmPeEo2379liGvfk/C3m0czaxAYIR3OveIaL0B/aOrfs1OTuV6LPpnOd07535+2lL0PodyQH9t2bu2a+XY9SkzAOJbDtDKK4bqX3wqOvW/qb9Xb6RbV++1ZElZeiMWGaxvPzHTOt5gtejivwAWFntg+em5l2fKk1Hyx0plQymjHDmk715BSM3WBRd2ExUVReNGDRm8J5X5mQlMSzvCtRHV8q0jInx06Xn0eW8qW46coGlV7wd4ecZms9G0bUdqZ572RtyzdB4rv3qNEzs3kp6cRGjV+sQ07UmFFn2xh5RMUFBD2WHzk0v4f53y9CmdWqnsjs00GtfKZE9mAVe784V0xXulsqGUSfp3Fjlpxwmt67uHWkZGBocOHSbcZufSsCqsy05lfMp+cgoYSg4KsNO5TjVW7TtcXLXLBbbAINKOHeS8Z76kxd1fEdtpBCl71rFx3PXs/fl9Mo7uLmsVDX5E7FLgZihHPSWlVI6InFypbAcmnFyp7D7+Ia4FY4NxrVROA0ouqJrBJ2yBoQTHNsIeEulzna8mT6FtmzZUWe0KD/N8TD1eT9rD35mJ9AmJybdugN2Gs5zMgxaX9lc+SMX6LQgKi8QWkEl0425EN+5GdvIxjq36ie1fP86hGvVpPOoJAiNiylpdQzGxBxmXcF8oTz0llFJzlFKNlVINlFIvuGUfnlyt7M4Pcof7eCul1PKy1dgQEF2DbIu4gDoWLlrEmGef57kxT52ShYiNi8Ni+SH9GI4CDM7BpFSqRZb+fEBJUK1lV4LCvI15YGQlqvW+kma3TyS0cm22Tn/Vp4CyhvKN6Sn5RrnpKRnOTDIPbcIWHE7m4a1kpzQArLN1bti4kcuvupbPPv2Ytm1a45mBqGlgGBVsAUxNO8LgxCAWHDtKfFoa7aKiOZ6dzeiaNYkDdh5PpF7Fwq9zOhOxBQQSN+Q2Vr5xLcm71hNSqQaZCYeJqOmfVPWG0sXmY7rzsx1jlHzFKpBmIVfoi4VrrnUFfftWrt/Z1Zpp5Y5AfXRym5eDo4vgfC7r55dPJ7pc+U9V7r3xKnL+GYfjvMeZeWlrYivn9nr7sXUfFqUm8NnxA1xbsTr2+59lPs/y97Hc19CaGNblJPPcus1UIZhYgliRmIAA1xxcyUXr97A3I4V/PlvFSg/X5MFXtNLqeXTdHq38hRd+08qffnEIOfViSIjPnV597xXPW34WFW3HtfJBYQe18p1N9GGXfvpsulZ+2/1XsCI9iQNz3ib52BEiKlYmPTmR6+fUYkjbxvRpGkewh+v72k8XkHrd1Sx97Mlc7fT4fKy2/axmfbXyxPq9tPLwfDzIqjkK15tLselfLhxKkZzt3ZZVmKe0bP1vM7CcGQEzfOcbxigZikX7zl35cubPfD3hY2w2W674cpmZmTz45LNM2r2epsFh3Blbi85h0ZZtVSSI3t6xIgEIxs4PmUeJkQAC/JMC4IxAxEaXi66jRtM21GnZEXtgEAkH91Dr51d58+fF3PTpLOpUiiYzO4fMHAdZyRm8kn0Z4Ur5mp/HUEqY4TnfMEbJUGxq1KrD2pXLGHFeH2KiTxudNz4Yz/b4XYyr1YTKAdbrWwrCgWI9yXQKiGKf03oh638RsdnocdltuWQx1Wpzx3mdueO8zhxOSuVgQjLBgQGEBAaw7OuFJOfkcNfGdTxcrwFxofoesqH08VeU8P86xigZikV6Whr33XQ1WzauJyb69HBM/K7dvPPRpyye+wPbL9UvMPWV9SSTTA5RtgCyLKIAnK1UiQqnStRpx4/E8AiSQkM5r1Isd29czxXVazKqunc6D0PpY2Lf+YYxSoYi43A4uPmyiwiPiCAoOBinRxSIN97/iFuuvYq4OrWxiA3gM9EEEEUA87KOcV6QfnjPkJsLq1ajW0wFHtq8kSzlpEdZK2QwUcJ9xPQnDUVm0R/zycxIp1uvvkRGRrHvwAGWrVwNwB+LljBi8PnFaj+JbDaQzO8cJRUHmUpR3Vb0YcCzjWrBwbzVtDm/HD3CKx9PKmt1znqMS7hvmJ6Socj8MG0KI0ZdQb/zBhIWEUFYWBgXXXUjl4+8gOysbFq3aF6kdjNxsojj7Cad2oRyLrFUI5i64YFEW8QONOipFBTEm02b8+i02WRl5/DgDaMJCdYH5zWULGZOyTfML9xXrFy//eQqDiC6tqxcyC2ie1sFfLU79ZG0VX56WhyrHRUIQON6dTixbyddWjSgS4sGLFu6hFtvv4Nff53HvPl/4IyuihNouewvbTt1H7jcS7b0wFHu+uUf6hDK5dTEM4b4/lQH+/EOsrnxQ/+sof7gmZ9p9mIzPnjm51zyy7foXcsB5IVXtfLNFikqth7cpZUPuvZirTwhXf+9hdbXr1XqeH8kS4Ji6Hj/sFzytoHR3P7KxzSYNI1hvTpRMSqC1g3rMvQBfeDrmCD9d2/LtA5MHBCid/HOzNH/RkIsegZ2ESID/3u9Bquo9YWlmMlQdwLJgAPIORn5XEQqAt+AazkgcKlSKnc6gFLCmG6DHh+M6k233MLkyV+TlJR0SvbwI48wd96vVK1atdCnTM3O4Y7f/qEXlehFJbyTWhiKSu2qlfnh9cf45Z2naF6vFuEhwYz5eCqfjP+orFU7axC7rcCtwDZOJ0MdBDQHLhORvEMSnslQb8aVDNWTfkqptnlScTwK/KaUagT85t4vE8yv3lBkatWqRYMGDZj/++9+aW/j8URqRIRRB+t8R4bi0SyuFneMHMSj11zEhP/dzsQJE8papbMGfxglPJKhKqWygJPJUD05lQxVKbUEiBER61Arp+ucTP3zOXCBzxfmZ4xRMhSZpUuXsmH9enr27OmX9sav3coVzeL80pahYNo3rc/O+B0kJiaWtSpnBWKzFbgBlUVkucd2c55magKe48l73TJfyyhgroisyNN21ZMZF9x/9dkrSwEzp2QoMk2aNGHQ4MGc2/8cPv/iy2K3ZxehUkgw+gA9Bn8TGBBAm7btWL7sH/qfe15Zq/OfxxYU6EuxowVkuC1WMlSgh1Jqv4hUAeaJyCal1J++KFZamJ6SocjExMTw2Rdf8tjjT3DhiBGkpaYWqR2lFGP/Wc/aIwlUCfPOXGsoObp268riRYvKWo2zApvNVuDmA8VKhqqUOvn3MPA9ruFAgEMnh/jcf8ssaZkxSoZic+moUbz3wfts376drVutU4dbkZbjYPKmnfx4YT9ax+rTfBtKhq7durN0yZKyVuOswE9zSkVOhioi4SISCSAi4cD5wDqPOte4/78GmFm8qy06ZvjOR6xcp/3puKo7h2X7Fq7oWrfy/MjPy86iLafyrjNg0BCmfDOV2597kwE3P5Lr2PMP6yNUt7nAFX5o/x+TCKrVnLub3g/A75/r39xDBl2vlduO7NDKs7at1cq/vvYDrbxtj9ocigrmgvPq55K//Zm+HYB3x+rX/DRyHtHKX+2lN7ovr9IvCj6/sT6quP24PuFyQMN22LYcILjdoFzyXzP1oYZq2uM5dOggvgbUVoHWTij2NH3E9JDQQr5oKKW/9yzuVWUReFbKWQ4qmx9cwouZDLUq8L072noA8LVS6uT6h5eBqSJyA7AbuKTYyhYRY5QMegpr3ICwqAqs/X02/a66i6BCBAINCIkgMNKEDyoLVq9aRZs2bctajbMCfy2eVUrNwWV4PGUfevyvgDs09XYAbSzaPAb094uCxcQM3xn8RkBwMA3ad2f2u88Uql7F1v1J2rac7NSEklHMYMnKlSto36FDWatxVuCn4bv/POZTMPiVoXePYeeaf9i/db3PdQJCI6jY+hz2/PyRSftdyqxcsYIOxiiVCvbAgAI3gzFKBj8TFBJKhyGjWD57SqHq1TrvRtIP7+Toyp9KSDNDXtJSUti0aROt22hHdAx+xvSUfMN8Cga/037gxaz/6xcyUq3jpOXFHhRCRO1mpOxeT0JqRq5jTqfiSFLR3M0N1kx4/TkuHjmSsDCTCLA0MEbJN8ynYPA7kRVjadC+O2t+LZxXaUBYNOlHdtPtf+NISndlmE3LzOa6D6ZxwasFL85VSrHv0BHmL13FJ9/O5uCJpALrnK0snT+XJfPn8uLLes9Ig//xMaLDWY8ZxPSRwrpaW7qQ+6kdK/dYq/Yt28lHH6u27BZtHU/MYPLvmwFIje3Br5PHsz2gI2988KS2/Effb8i1X6nL5VTqcjkd90xk9MRfadGkEUtWrCY4KIiA6EqoTXpX8Zx2g1i9Zg2jrriK9LR0GjVqyNat2wh96x2G9BvuVb5O1c81rUBE9UiOBtqIqB6ZS/7g4X+15QHW3aSP7t1iwmda+dxD+uju3/y0RSuPDtNHAWjaprdWvvxAKunqKPOzc0ee6VMn4tT/K1eu5N0n72PatGmER0aT7fCexwtSGV4yAOzWUQlUcKRWLo4sfYUiRNLXNnOGzEPafYvocNZjjJJBS6HXO+UhrFYrUIr0feuB1oWq+8Yzj/Hdj3NJTU+nd9dOVK8ay5Nj39KWTU5L562XXubDjz7mrTdeY+RFFwLQuXtPataqra1zNrNr925GXnIJ7737Ll06dyYt58x4oP8XMMNzvmGMkqFEEBEqtBvK8ZUzgMsKVTcyIoJrRl10an/ugr8IC3WFH0rPyCQoMBC73cbabbsY9uDL9D3vfP5a8Bv14uJO1bHZbGRlZfrhSv47JCQkcOGFF3L//fczYkTewNKGksYMz/mGMUqGEiO6+TkcXTKFA/FbqV5Pn5TOF0SE5WvWMfC+F1i/Yw8nklOoUbkCx5NSef3uq7n6Ce95kebNm7Ft6xY6d+lanEv4T3HTTTdxzjnncOcdXusqDaWALcg8bn3BfEqGEsMWEEyFNkP4/euPueKJV4rczrm9ezBv6ufs+OdPDhw9wfQFSxj/6K2EhwZTpUK0V4hkgMOHjxAbW2bR98sdy5YtY/WaNUyaNKmsVTlrMT0l3zCfkqFEqdBmEGv/nEfikUNFbkNEaNOiKSN6d+K6of3YtvcgSalpVKkQbVmnRbNmvP3mGyQnGQ88gLFjx/LA/fcTFKSPsWcoecRmL3AzGKNkKGHsIZF0HnQh87/xT4bT4KBA7rxkEK9P/iHfci+98BxNmzXjouFDOXFcHyj0bGHz2lWsWLmSa665puDChpLDZi94M5jhu2JjFa3b6dCXt4hoDApx5mjKW0VGLpzckvzasbi2QKXRE6hXNYKv7vcOWROV0ZyuXbswbszD1KxV65T8pky9i/fx8Fpa+cvHswHI7FmXmV8N4o7NlYmMrUabzfre0NjX32LM/x6nb89udO3eg2bNmjNwyFBaLdHnNEvPdiKrlxH0Ym6X8Tqp+ijkAIlfztDKV4wYpJXX+lK/dmvr/O+18n396mvl2RbOkb2q2lm0R+he1fWAS0lJ4fZHb+ep514k2x5MdlbuilEWXspicYL8fPUcNn1jdme2vq3C3qtWHqF+ci0vaSTQuIT7wpnxbRpKn2K6hHtSs1YtbrjhRp55tnCBWq3ISnNFd7AXMBQlIox5/kU+nzSFPn37cfjwIS4YMpDl/yw9K2LsJScnc+d9D9C9a1cuvuTSslbHYHpKPmF6SoZS4f4HHqBN69asXr2atm3bFquto7u2UK1RS8KiKxZYVkRo3bYdrdu2A6BT567cdsN1hISGMPb1t+jeS78I9b/AiEtGExwUxLTJX6Hv2xpKFWN0fML0lAylQlRUFPfcew+vv/ZqsdvKTE0mODyqSHVHXHQx/6xdz9PPvcjN111No9rV6dO1I7/Nm1tsvcoTe/buY9OmzcyaPpXw8PCyVscASEBggZvB9JQMpciRI0eoVbv4URZysjIJCNJnfPUFEeHcAQNZvm4TWZmZ/LNkMXfceD0//P5XsXUrL/z199/07d2LQDOPUX4wPSWfKLGekohMEJHDIrLOQzZGRPaJyGr3Ntii7kAR2Swi20TkUQ95DRH5XURmikiEW9ZERBa429soIuNL6poMxWPQoMH8/NNPOJ3Fm69yOHKw2Yv/PhUSEkJUdDTnDhhI/YYNOXzoYLHbLC/YbDbsAeadszxhArL6Rkl+Cp8BAzXyN5VSbd3bnLwHRcQOvA8MApoDl4lIc/fhu4G7gE+AK92ydzzabAa869/LMPiLHj16EBwcwvTp04rVzp61S4iKreEnrVx069GTmdOm+rXNsiQ0JITMTIugqoayISCo4M0HrF7aPY6LiLzjPr5WRNq75bVFZL775X29iNzjUcenDkNpUGKvUkqpP0UkrghVOwPb3PnkEZEpwAhgA2AHnO7tpG91dWCvx3mtQzqXJpau335q3k/ecf70QQu2Cw0qeP+wbCfPIvD+e+8y8pJLQClGXar3CPtr2wmtvEf9imxYsZTEnZsY89Y4gkNCARjQoIK2fJX+j2jlnUZe5CXbsy2NOgcXEXjRYGpuzT2/tOOLydp2AKZf+pJWfvcdw7Tyfp8us2xLx9/r9YuOhzSvqpV3qB6OwkZAWBTpmdlkB7g+oyCn/pu2iuCtLKKB5+fGbXdYxBr0U8T8Mx2xF3/4zuOl/Txcz71lIjJLKeUZcn8Q0Mi9dQHGuf/mAA8opVaKSCSwQkTmedR9Uyn1WrGVLCZSkq6xbqM0WynV0r0/BrgWSAKW4/qATuSpMxIYqJS60b1/FdBFKXWniNQFvgQSgcuVUskich3wFrAImAtMVEolWOhzM3AzQFxcXIeJEyf6fC3KcsjJP59fSmoaEeG6ZGsla9z8SUpqKmGaSXVbHgOdnp7Otm3bqFypEtWqV0fyHE/MsPYVy87OYs/2LdRr2vLUJxMVrH+3WrNlr1YeVsHbiKXs20LVCtFEV6xERJ7mso5ZL749UaGmVl7FkaCVb0nXJ9RLS9CfI7yC3sOwZoVQrTws0E5qagpKKQ4cOECjRo0BUBb3qa3Q929+96NVW4W7h1NSU4kojHNGEV4A895zBdGvX78VSqmOhT7R6fOtyFz4TfuCygX3HLVSKWWZn15EugFjlFID3PuPASilXvIo8xGwQCk12b2/GeirlDqQp62ZwHtKqXnuZ3NKeTBKpT3oPA54Dtfd+xzwOnB9njK6u0UBKKV2Abl8eJVSE0XkF1xDhSOAW0SkjVLK67VNKTUeGA/QsWNH1bdvX58Vz7TKouqnt71F/yyne2fNPV/CCwMLvYAR6zfchUuX0aGzdwDUELv3V9qsaVNuueUWEhITmThhAg0aNDh17EeLnhLAHzO/4Y9Z0xjz6ahTss4WPaWhT/jeU9r23V/c0SacbkNG0qNi7oXPu2Z7jTKfwqqnNPy4fpHsY1v1qcdXff+HXtdRV2rlL3bSpwPpUD2cf5YswaEUn06YwO/zFwCQY9FTClVWuY70D21ls35kaBd/Q6Hv4UVLl9GtaxffKxThHg4J1Rv1EsU3R4fKIrLcY3+8+7l1kprAHo/9vbh6QRRQpiZwyii5OwztgKUe5e4Ukaux6DCUFqU6s6aUOqSUciilnMDHuIbq8rIX8HTRqgXsL6Dd/UqpCUqpEbi6qC39pbOhZKhevTozZsxg1KhR9O3Xj88++8ynBa11G7fgwO54crL1UQKKSoWmnZmzaAU5OQ4SU1JJz8wstkNGWbJ/3z6qV69e1moYPPDRJfyoUqqjx5bXccvypd3XMm4nsenAvUqpk+FQxgENgLa4jNfrhb9C/1CqRklEPH8lFwLrNMWWAY1EpJ6IBAGjgVn5tDlQRALd/1cDKgH7/Ke1oaSw2Wzccfvt/PzTT3wwbhwjR44kPj4+3zr1m7Wkau04lv5m3XspCjEN25GclsGG+D00uOBWqg64ltCel/LIu/osteWdLVs207hx47JWw+CBnwKy+vLSblnG/aycDkxSSn13soCPHYZSoSRdwicDi4EmIrJXRG4AXhGRf0VkLdAPuM9dtoaIzAFQSuUAdwK/ABuBqUqp9fmc6nxgnYiscdd5SCn13/HtPQto0aIFf/35J126dKFnr15Mfu8VMtLSLMsHBgWRkZ7uVx3sQSEs+/w1WjeK4+ivX5K0YDK3XDSA6pULjhpRHtmyeQtNmjQtazUMnvgnzJAvL+2zgKvdXnhdgUSl1AFxTaR9CmxUSr3hWcHHDkOpUGJGSSl1mVKqulIqUClVSyn1qVLqKqVUK6VUa6XU8JMTb+7ht8EedecopRorpRoopV4o4Dz3K6WaKKXauLevSuqaDCVHcHAwDz/8MEuXLOHQnl3ce0EfFv0yy2tIb9PqZezfuZ3eQ73nhfxNanoG4aFFX6RblmzduoXGTUxPqTwhgYEFbgVh9dIuIreKyK3uYnOAHcA2XL2e293yHsBVwDka129th6EsMKvrfMSWekwrd4bGWFSweOtx5DMXoossbvXa4K8o4UXAarLbBoTYdPNC+knz5GzvstFVa/Lrt1/w18K/ueuee6ljS+XWW24GYE8avPHJW9zzwMN0rF3pVJ2pG45o268Qp59a/HeePkq47bJRSMpObHXjALj0ssu57p5HSP/fk9xy623aOvf9851WfmTtZq38t8b6HuC4tx7Xysc88b5W/nSw/v6ad2U9xJnNtq1baV49huBU12fzT6J+Yr9NVb2XW7jGOaWoWN0vlo4R6J1pLO9tq0j95c3l3E8RHdzrO+fkkX3o8b8CvNILK6UWYvFjVEpd5Rfl/IBZQmwol/Tq2YOHH3qAz7/8ir37XFOE/65eyeoVywmPiCgVHQb178Pfs6fy3DPPcOzo0VI5pz/Izs4mNDSE6KiixQc0lBAmSrhPGKNkKLdccvHFDBs6hK7de/Ls8y/w2D13MPLyq3j56SdITi6djLIN4urQt18/fv7551I5nz/Yd+Agoy8aUdZqGPJgwgz5hvkUDOWWwMBAHn/0EX768Qfe+2AcF42+nCeee4n6jRqzYuniUtPD4XAQWhbrWoqA0+nkREIiYx59oKxVMeTFHljwZjBGyVD+adWyJe3btaNxsxbYbDYaNW3Glo0bS+XcSilWr1pFm2LmgCotjhw9ht1uIyoysqxVMeRFbAVvBmOUDGcGdevWYe/uXQAMHn4Rn457h0V/LvBL20o5caQcZsqM2Rw9foIvv53Bpm2uFOhzfl1AZFQU9erV88u5Spq9+w8QFOhbYE9D6aLEVuBmMN53hjOEuLp1TxmlDl26ct+jTzL+3Tfp3rtvkdpTyknG1t/IPr4TR8phbMERzIjpxNCLLmHen3/z8LNjufmq0ew9cJCrr74G2xky3r9l+w4CA8+MocazDuPI4BPGKBUTe9IB/QGrGGFWbrDKieR4pxpQwYUbhrFygy3SW1hh64jo61jolDdQ60kSc7zbqFC1JkvXL+BwqitW2/qNm2jWvguHU7PoVDNa206jzk208v8NvZBFv/3MZ29N5c4P3qdB0xaER0ZRNzqEHWuX8cy4Sdx+8ABjHr6P336Zw/WVahGSqnc73zPzR638lbcWaeWjO+hD//SuMF8rT3j9Hq3cVi3GS5aalk7tc17j9dde474/E3IdO5KsX08+uJVen3PrWy8armSxdEssljtIjj56uLJb9eiUfnmE/cx4MbDkDHmxKWvMp2TQU86GEsLCw8j0iOKw9K/5dOl9TpHaUkox5aO3ufKOB2ndqRvhkd6u01WrVeeeh58A4PyOLYqmdCnz+Ni3qd64DcHhJTefZGWQDAVjhu98I9+ekojcn9/xvKEqDIaSIjQ0jIyMtFz7CSf0C5oL4sCenRzat4ce5+Wfx6xpy1Z07dGb9Az/hjQqCRYsXsaMX35n4MvTAYuI9oayJZ8I64bTFGSaI91bR+A2XOHPawK34soKazCUCqGhoWRmnB7eHHH5Ncz4yvd8WJ6kJCVRoXIV7D4kXevepx/rNuqjM5QnHn3pTd4e8yghEWbBbLnFeN/5RL6fglLqGaXUM0BloL1S6gGl1ANAB1yRZw2GUiEkNDRXkNZzh13IulXLObB3d6Hb2rZ+LbXrN/KpbEZ6GuFh+sR85QWn08n6LTvo37MQOYgMpY4ZvvMNXz+FOoBnNrAsIM7v2hgMFiQnJREWcXquJCQ0jL6DhvHHz7NzlVu+5G82rVtLTo51XLVlf/1OZx/no9LT0wkPK9/ebPsPHSE6MoLIiEJkazWUPmdRT0lEGovIbyKyzr3fWkT+50tdXwc5vwT+EZHvcSWLuhD4okjaGgxFYO+e3VSrmbtz3r5bT+bNnA533A3AzzO/49UxjxMRGcWhA/sJrNaAhhfeTWbCEbZ8+xq2gCCU00HmiUPcPWasT+fNSE/nj0UbqR9Xlwox0cz6aS6XjBhKl44FZrYuFfbsP8idT75IpzYmr2W55+xyCf8YeAj4CEAptVZEvgaeL6iiT6bZnT7iOuAEkABcp5R6sajaGgyFZc+ePVSrWTuXrF2X7qxZtgSn08mWDet46YmHeP/Lqcz88x/mLltH5ZY92fjls+ya+zlxA6+n1U1jiRt4PZWqVGX39q0+nfeqG2+lfetWfPrl19z58BME2O1cectdPPjksyVxmYVi8/addBwymg6tmjPl/VfKWh1DAZxlw3dhSql/8sishy888KmnJCJ1gKPA954ypVThB/TPUJwh+glkm8WNJJl6DyhbZqr+BGJDBXkPv2SJ/isK9FNmAcv0AcpZ+B+JUvo1SRbt2EWf/jw8yLv84f17ORbbkm9W5U6yaQ+P5rxhIzmx6R/qDbmF99c5Yd1qAL5++1mevPsAq5ct4bMXHyQgIAAYwvF1Pbjqmmv5ZvLXdO/W9VRbhzIFEQgOOP3htmjelLhPt3N57Uio3QzSDnBpz5ac8+lnXJm8jwUztxfwoeRmygqLdW0WTPz13lz72ThJwbWGZwPJ1EI49NZP3P/WTwDcfWAtu9cd5faWcbnqLdmboG1/5W69vE01vVt5jtP6kVEpVD98GJSl/y1Yp64QVCHiwCmrHogqZw/5s2ud0lERaYA7DbuIjMSVZr1AfB2++/Fk40AoUA/YDJwZCzgMhaa8vbXt3r2bas3P85J3v+JuNm+NJ/3wXoKjK+U6JiI8/vJbHNy3122QXPTt05sJn37MqMsuZ/q339C5U6dC6RIVHEjl0BCOpusXhfqbE2Sxm3T2kMFhMgnH9RC2IZxLbKnoYPADZ5dL+B3AeKCpiOwD4oErfKno06eklGrluS8i7YFbCqmkwVBkdu/eTaNY7+gDDbudR3LsQXb+PJGout6rFMLCI6jf2Dst+Hn9+/PRuPcZeeloZn4/nXaFDLhaKTSIoxkla5SycPIXxzhAJnUJpSWR1CCWILPm/cyknL3olSRKqR3AuSISDtiUUj4vniuS6VZKrRSRwr1eGgxFJCsri8OHDxNRqar2eOKOfwmrUofAiJhCtTt40CDeeetNLrhoJPfdew8N23YiMtC3B0e96Ah+3XWA3VkJxEgAXQOiLcMmFQYnisNksot0tpFKbUIZRQ0CjSE64ylvow8liYhUAp4GegJKRBYCzyqlClzx7tOnJCL3e2wPur0o9MHADAY/s2fPHqpXr449IPc8Q05WJqt++JKNk56nWudBRWr7ghHD+XziBHbu3Mlj993Njm1b2b1rZ4H1Lm8ax+6kNHKU4o/sE+xyesctLCwnyOZbDvAXxxHgfGLpTSVjkP4r+CnzrIgMFJHNIrJNRB7VHBcRecd9fK17ZCvfuiJSUUTmichW998KxbzaKbhsxMXASPf/3/hS0de7PdJjC8Y1x2RSWxpKhfj4eOrXr59LlpWexld3j2DvumW0vuV1anQfXuT2+/bpzVtvvM7chUuJio5hxHl9mTZ5EkrpHTEAmleK4YNzOzM8OJZKEkgO1mV9YQepzOIgbYjiEmrQmQrEYgLN/afwwzolEbED7wODcEXVuUxE8o5bDwIaubebgXE+1H0U+E0p1Qj4zb1fHCoqpZ5TSsW7t+eBGF8q+mqUNpyM7qCUekEpNQkYVlRtDYbCEB8fT724uFyyzNQkHDk5DHvsHSJq1NdXLCQ2m43KVarw9fez+WTceww/ty/ff/sNWQ59lPOTHFPZxFh4SfrCGpJYzAkGU4WmRBS5HUP5xk8u4Z2BbUqpHUqpLFw9krwdhBHAF8rFEiBGRKoXUHcE8Ln7/8+BC4p1sTBfREaLiM29XYqrM1Mgvv6SHgO+9UH238XihnFE6L2fJEzf+3VauIqzc4M2xH+QxRyHKsZDMFc7+XkEWaScsHyjK2TqiiDL2HO5ex074uOJq1ePBwaeDg104EAEcwJtvDSwEbO26Iepb/14qVY+8bZuWnnTkFS246BHizqsXPATc+b+ytsfjGdGQCA/z56lrTOy+2u8cO9rPDXh1lw5lybc+Km2fJ2w3EOQ67NSmZqQzIIHLqN6lLdBim5QU9uOWAz12MOdHLIpGoTn/szXBurL396jrlb+/fpDWnl0qLWrdr96+nQXDSzmuHNi9NeWo+CYxofEarrPbtPfX/Z8pvhCrA+VHL4Zncoistxjf7xSarzHfk1gj8f+XiBvfCldmZoW8pN1qyqlDgAopQ6ISBVflM2HW4D7ga/c+zYg1R3kWymlLIM0FhQlfBAwGKgpIu94HIrCx4VQhjMUK4NUBsTHx9OhQ4dcsoCAAByOkrsFbTYbQweez3n9+hBbrxmJiYlER3vnbZq3egvZDge3fTiND2+7BCmEs0OSM4c3EvZxV3QNrUEy/Ldw4tO9cVQp1TGf47pG8o4dW5Xxpa5fUEoVOX9KQaZ7P7AcyABWeGyzgAFFPanBUBj27dtHzZq536oDAgLyjW/nL2b++DPNmzUlMlL/G5u7ahMjOrdi097DvPvjX4Vqe3LKEbqFRNKhkIkcDWcmTqUK3HxgL+AZ2qQWrue0L2Xyq3vIPcSH++9hny/MAhEZLiKvubehvtbLt6eklFoDrBGRSUop0zMylAnHjh0jtnLlXLJdu3YRVsLRuzMyMvjfcy8x/sMPLNOh7z+exFOjzycqLIQrXv+Ku4f29rn9rdnp3BBZzV/qGso5fuqSLAMaiUg9YB8wGrg8T5lZwJ0iMgXX8Fyie0juSD51ZwHXAC+7/84sjpIi8jLQCZjkFt0jIj2VUgU6UBQ0fDdVKXUpsErEOyaMUqp1URQ2GArD0aNHqZzHKP3990JatmxlUcM/vDd+Aq2aN6NPr17a4zt37WL97gM0rVWVxNR07LbCrVM6kJNFdcuU4Ib/Gg5n8c2SUipHRO4EfgHswASl1HoRudV9/ENgDq5pl21AGq64pZZ13U2/DEwVkRuA3cAlxVR1MNBWKdc8gIh8DqzCB6++gmbL73H/9bnrZTD4k8zMTDIyMoiOjs71ptm1S1cee/RRjh49in6ovHgcO36csW+8w+xvJ2mPb98Rz8Chwxhz2UAqR4bxwZyFVIosXOqImgFB7MrJIMZu5pPOBvxgkwBQSs3BZXg8ZR96/K9whfnxqa5bfgzo7x8NTxEDHHf/7z0ha0FBw3cnA+jdrpR6xPOYiIwFHvGuZTD4j6NHj1KpYkVE5JRR2rx5M5deegkff/KJqwd1vGhp0fPD4XDSt1cPhoy8nPbt29GxfXsaN25EldhYVq5ezYTPvuCxhx9iSNgxLnhpAhlZOXz9wFWFOkd1exCHHdl+191QPikRj4Lyy0u4Rtjm43pr7I3LY7tAfPUrPg9vAzRII/vPkqT0wyyBDqtbTe+CGxJq4SouNpI1b8zhFkNCVhGWrVy8cyzUDLDqZOTnvmrlmVfIKOG+EB8fT/Xqrph3QQl7cDgcXHflZfzv3tu4akAPSNhDoE3fQ+nQSj9f8+eu41p5RKPKZCs7e52RUCmSNz+fSnpaGr/8Np9tG9czY96fHDtyiCYt2/DkGx+SnpZG1/uf5KpzOvPUZQMJ8HBxv/GbB7TnWP/+6VUURxfuoW3zGtSsGENkHX0IJXsFvWfuzmleL7sApH71O+kjLmXdmy/nktdJ0sfpU1Nna+VVIvULdw8kWkeuWLk/SSuXmvplE3HZhYuCERGk/01ZrSMrjCdkaeCvntKZgFJqsogswDWvJMAjSqmDvtQtaE7pNuB2oL6IrPU4FAn8XTR1DQbf+fyLLxh5yenh7Y++mEx0VCQ3XzW6VM4fGhZGr/4D6NU/t7PpT99N5d2XxvD1A1fTs0WDQrerlGJnShpxEeU71brBfzh88647o/EMaeRmr/tvDRGpoZRaWVAbBfWUvgZ+wtUV85ygSlZK6V83DQY/cezYMX744QdeetGVT/L4iQSee/1dfp3+VZm+Bf/03VTee/kZ3pv0HT1TlhSpjTUnEqkUHERMkHF0OFs4C2wSwOsameeVn1NQA/mOqyilEpVSO5VSlymldgHp7hNEuBP/GQwlxleTJjFkyJBTnnffzfmFvj260qJJowJqlhw/z5jGey8/w7tfTdemxPCFE5lZvLZ+M5fG1S64sOE/g1MVvJ3pKKX6KaX64Yq3N8L9/3wgEXjQlzZ8jRI+TES24krU9AewE1cPKr86ISLyj4isEZH1IvKMW+5TNNp8otnWEJHfRWSmiES4ZU1EZIGIrBaRjSIyXtem4cxi165dtGnT5tT+tzPncMnwwWWmz6p/FvPms4/zzlfTimyQjmZkcuOi5XSPrcSlcbX8rKGhPONQqsDtP8T/lFJJItITl0/CZ7gDwxaErzPQzwNdgS1KqXq4XAcLmlPKBM5RSrUB2gIDRaQrPkSjLSCa7d3AXcAnwJVu2TvAm0qptkqpZsC7Pl6XoRxTJTaWo0dcGVKUUvy5ZBnn9+1ZJrrs3RXPY7dfxzNvfUiDxs2K3M77m7fRo0plbm/asNxNxBtKFqUK3v5DONx/hwAfKqVmAj6NVftqlLLdfuw2EbEppebjMjSWuCPUprh3A92bwrdotPlFs7UDTvd28lddndMTaiil/vXxugzlmNjYWPc6JJcnVVRkBOklnO1VR3JiIvdfN5ob73mYrr0LHBK3ZP3OfSw8dJSbGtfzo3aGMwU/hRk6U9gnIh8BlwJzRCQYX0fm8ssZc6qQyK+4jMdLQGVccZE6KaW6F1DPjitWXkPgfaXUIyKSoJSK8ShzQilVIU+9kcBApdSN7v2rgC5KqTtFpC7wJa4xysuVUskich3wFrAImAtMVEolaPS5GVd+EeLi4jpMnDixwGs/SUa23u00wOJjtspCatVFz0hLJSzc27XZ6uuxioCsrBaSWon9+ENISU0lIsL3haCWp3breuzoMZKTk4ir53qIb1y/nvr14ggJyR3jeU+Sfq1PSppeHh2hf2GrFhlEWqr397B58xYyM9IJCAqiep16BAaerh9lFTRbObxE2+N3ER4ZTWyst4t0QHaa/hp27tXKE9P0SwKCbYK9RhUc+3OHLouupo+vp2L1Q4hHU7O08vyiVljd85HBen+qYJv+BkhNSSFCU0dZRb+wUMkh1knzAizCRlnRr1+/FQUESs0XEVmx9XBSXs80LxpViVqplOpQULnyjoiEAQOBf5VSW93x9FoppeYWVNfXdUojcAVlvQ+4Atfq3GcLqqSUcgBtRSQG+F5EWvp4Pstotm6Hi1wBxpRSE0XkF1wfwgjgFhFpo5TKzFNuPDAeoGPHjqpv374+qgPrD+jXYFQK09/44RZx9hMzvB9WAJtX/0O7Tl295DkWs5/RAXojmWWR0sJu8cCwO/UP7qKkbl689B+6dfW+Bius1k6dfLhddeUVnHvueXTt2o0jR45wycUXs+LvBdSonnv90T2/HtA1w+L1+7Ty87vpHQwGdqrH6mVLaOvxPSScOMHQocN49evZ/LtsEWOevYGnPviSBs1dIY561NB//5KemGv/z0VLefH555m/bDXBwd5rgGIP6D1l/376Ra38r1X6JR+NI4KIfuouEp/NPYLd4yH9Yv2s8y7Sn3e53hhGhFg/MnSGBKBFnEVKiwj9DbD474X0rhfjJc+pqE+zgYWBSQzwbuMksVGl74r/3+oI5Y9SKg34zmP/AKD/oebBJ6OklEr12P3csqB1/QT3QqqBuKPRugMEWkWj9SUSbt5z7AcmABNEZB3QElcvzXAG4nA4mDdvHq+/8SYAb7zxOpdcdIGXQSpp/vrzD5p36EJck+bENWlOxdiq/O/6S4iuVJnL73iQ82+8uMA2srOzeeTZlxnzyH1ag2Q4O3CebTEdikhBi2eT0UfHEApI1CQisbjmohJEJBQ4FxiLb9FofYmE63mugbicJ7JFpBpQyV3PcIZis9lwOBwEBwdz8OBBvvziC1b+vaDU9Vj890JadT49St1jwDCatuvE/p3bee/phzi0cgFvvvKS5bClw+HgmjsfoFrVWEZdMJQTpaW4odxxNvWUikNB65QilVJRmi0yP4PkpjqulLhrcRmZeUqp2biM0XluF/Pz3PsnXb3nuM+bA5yMZrsRmOoRzVbH+cA6EVnjrvOQryEtDOUTESGuXj127tzJwYMHqVKlSqn3kgD+WbqUZm075ZJVqlKNVp178Na0eYgIPfoPYNuOHV51HQ4Htz74BCcSEpn80buW6S8MZwcOZ8Gbwfc5pUKjlFoLtNPItdFo3cNvgz32tdFsLc51P67Uu4b/EPXi6rEzPp4hQ4eyf/9+jp84QcUK+tiBJUF6ejpbNm+iYcs22uOh4eGMf/8dxk/4jH4DhjL580/p2d2Vav1EQiLX3HE/mVlZfPf5R4SEmGG7sx0zfOcb5tXNUG6JqxfHjvgdBAQE0L5DB5b8s7xUz59w4gSRUVEEh4TmW+7m66/l4w/e4crrb+LgoUMopRh+5Q00qFeXHydPJLyEkxEazgzOsnVKRabEekr/NdKy9V5zew/qIx3HVQjRyq284BxOSMj0PkeAhQtucID+q1MW3nqBFt6xJ3Ks30uiLKIyZ1ucQynI1hyyCp+SZRlh3SU/kZBErbj6pGY76dC5K4uWr2bgcG9vsRcG6Odz5jaqrJX3jYvRyoNnvYaENiJ41msAhJxIRqWnMDDyqIWeMGaR+/MLb0O93sM59+q76DHqZv7ddZjKN97MpXNyh4i8rJO+x1QtUh8hov1vv2rl3ZP1U6ZZC79nSUBlBn90fS65LVzvEr75Nn0ut6ven6qVv/VnvFYO0KWe3stutYXnauOqqVq5Cgojq7a393TQHr2HogrSR4mPjshvPKz0XxSyLe93gyemp2TQYmWQSpNFfy+kew9XBIfOXbry22+/kZ1devmHEtMz8GUdH4ByOjm0YxMVqtdhxY9TqNv7QsTMIRk8OMsWzxYZ86sxlEsO7N9PUmIiTZq6Qvr06NWbkNBQPv7kk1LT4b2fFnN1nwLXOwKQkZrMztVLqFCjNjtXL6F2D5Os2ZCbsyz2XZExRslQLln091906d79lMdacHAwXbt2JTVVP+RTEmzZf4RuTXwLhh8aGU31Ri3486v3ueKlCQRF+Jz92XCWUBo9JT8EvH5VRDaJyFoR+d4d+AARiRORdHfQ69Ui8qGuXX9gjJKhXDLv55/o3bdfLplSqlSDmB5MSGHywtU4nQX76makJHHi4F5GP/shlWqZ2HYGb7IdqsDNDxQ34PU8oKVSqjWwhdwpzLe7g163VUrd6g9ldRijZCh3JCUm8uu8uVxw0eloCU6nk7lz59KyRYtS0yMxLYMfV2ym29DR9L7wSp59432SU7x7akf37GDa8/fQuGs/ajRuVWr6Gc4sSmn4rlgBr5VSc93rRAGW4IqmU6oY7ztDuWPm99/Rs1cfKlU67T03e+YMQkJCGDBgQD41/cvb1w/jpnHf0aBubW6+ahQTv/mOZr0H06lNK3bu3Ue/Hl1YfNjJ+j/m0P3Sm+g07IpS081w5uFjEr/KIuK59mG8O2anr1R1x5nDHcqtiqZMTWCPx/5eoIum3PXANx779URkFZCEK1/SX4XQy2eMUfKRNtF6l/B/RR+5ONDClfuYRXRnJ5ChiVBqEdeVfVkWEbCD9V5zJywCwVpFfT6ankOIRShyqyE0h1IkZXoPdUUH6y/C6tqmfD2J2+6+N5fL+FtvvEb/6+9l8gZv9+y+cfoFtU6Lp8CqAylaec1+95C5fjk7urrWcLfqB19feD+P3nQFU+b8zoSPx7Nuw0Y2b9lGndq1+HX+AhqQylO/LiGmUm7389u66ueiqmQf0coPB+qvISlLP3S4X6pq5VH9b8ex6h+OtxuSSx7z0xva8plJ+lQgQQ/rDexbL+qyXbv4LUn/WwixCKX/5Cq9q/j5IQ5smcle8hPVvdbiu+QW93ZOPsNhRUvRWDyyfQvZcLSgaOTurA268CZP+KiKZcBrj3M8AeQAk9yiA0AdpdQxEekAzBCRFkop/ZdYDIxRMmixMkglTfyOHezYvpV+556fS37o4AHqNi39obH6jZqwcN4cqjdszkvPPEmrFs1p1cI1/N65Y3uWnrDKXWEw5MZfy5SUUudaHRORYge8FpFrgKFAf+VeE+HOuJDp/n+FiGwHGgN+X9Fu5pQM5YoZ33/HkOEXEBiY+2EfEBBITrY+x09Jk5CUSMUKMURHFRTu0WCwppTWKZ0MeA0+BLwWkSBcAa9nwang1o8Aw93pJ3DLY90OEohIfaAR4B3w0Q8Yo2QoV8yaOYMhwy/IJfvsk48ICAggIrr04t55EhMVTYWYGO584JFSXbxr+G+R7XAWuPmB4ga8fg+IBOblcf3uDax1B72eBtyqlModrsRPmOE7Q7lh186d7N2zhy7de56STfnqCz567x2mzprDhuyyiSEXFRXJwnlz6HneYP5YuIhz+/UpEz0MZzalEWWouAGvlVINLdqdDkz3n6bWmJ6SoVyQnp7O15O+YsjQYQR4xPX7cdYMnn7hZWrXscg6WkqEh4fhcDqpEGMWxRqKhgkz5Bump2QoF9x6042sXLmCL7762utY3vmlsuCDjydQvWoV2rVpXdaqGM5QrLxBDbkxRqmYtKyod8HebRENJ9wi0OlRpcjR3LQHU/Quu1arvx1R+ijUx9P0cyH1LKKZZzgUmRoXdYCKofprCBBFZbu3vkr0qR/ik0/rlIWdOx55isqNWpHiEZFd7AGcSEklJdvBgAaVtO1kFnIsfssx/Zfz7HfruKZ+Gs9+ltuh6IsBIbz02pv88eN32J05Lv99N/Vi9BHKrVy/2bVWK65ao5G+/EH9XLItJlYrz4pqQYBA5ZDc3pNSs4G2fPtP9VHCVaD+Ozv2mbVLeL9uPfQHmvXUirv2qamV/7HkIHtzvM//yyadIxnUjtbrWidaf2+XFVbR9Q25McN3Bi1WBqmkiIyOJjkp0Uveqm17Vv2ztFR18UQ5Hdzx4OPcd/vNNG5Qv8z0MJz5mICsvmGMkqFcEFOhIseOeL8J9+h7Dov+XFDq+mSnJbL/z29Y/cY1KKW477abSl0Hw38Lp1MVuBnM8J2hnNCqXQe+/vSjXLKsrCx+mT2D1NQUn/Ma+UJGajKblv5FZKVYoitXJTszneMH93NwyRqyKrVly9cTSdy+mgrNutNo9P+Y88wwv53bcPZihu98wxglQ7mgQ9fuPHrHTWRlZhIU5poL+PLjcaxdtZJvf/rdr9HBD+3awRfP3Efd5q1JOHKIwOAQKlatQZqKQmwdqNi8F/VG3EdguPG0M/gPMzznG8YoGcoFyqmw220kJpwgIqw6AH8v+J3rbrmDSrH6Sf2iUrtJS0IjIrnmmXeIqVL9lHzKH/EERqZRua3XMg+Dodg4TE/JJ8yckqFcMO6Nlxk44mJiq7riTGZlZrJ6xXI6duvu93M5nQ6yszIJCdd7zhkMJYHDqQrcDKan5DNHnHq3U0em/kZKzdZHA7eK4q0UZOZ4uzY3rKg/b1q23g06zCL0dohdL48KsngvCYKwbH0AYCsXb4WNrADvYyGJ+zWl4Y+drnM7HQ6+/epzxkz7gz92HufCplVYs24TderWpUbl027gFUL0n12SRUi8IY31LuS/L9xCg/oNuLR9bm+64U1i2bp6GV+f2yl3+xbfGcDxZL2rvTOkslZerZ4+vXraTH0iT1ug/ica2kZvrB0z30QFN8Ax883c7YTr4/bJjjVauZUbd8U+1r1ICdCvJ5PD27RyR3V9rO5AcqitTnjJb5TV2vKLgvS61o3WRy0vK7I0v2+DN8YoGbRYGaSS4NiBvYRHVyCy4ukH+b9rVtG6jT5VQXGJionh+LGjOJ3OU+nWDYaSxvSEfMP8Ig1lzqFd26kWlzvk1vp/19KidfGiJ/z26zwuG3UJ302bRk6Oq+eamJjITzNnkJGRTmZGRrHaNxgKgxm+8w1jlAxlzqFd26laN/dQWmBgEI4cffI2X0hLTeXyUZfSp08/Ph7/ES2aNKJJg3o0b9yQ1SuX8+OCRYSGlU2AV8PZSVaOs8DNYIbvDOWAQ7u2U6dZ7l5Rrdp12Ltnd5HbDAkNRUS46ppruPX229m2dSuhYaHUqFHTMlOpwVCSmJ6Qb5iekqHMORi/jap1G+DIOe0cUqNWLfbt21PkNm02GzVr1WLPbpdhy8nJoWrVan5d72QwFAYzfOcbxigZyhSnw8H+HZvJTEvh4fPbMO2NZ4jfsZ0XxzxJw0ZNitX20GHDuWjEMK6/5mq6de7Ipx9/7CetDYbCk5njLHAzmOE7n7HwtGZPgt4fOTFD7xIeEaR3pxaB4ADvk6w/rI9ofcAieniFEL1bbnq2fsiqcy2rqAXhBNr0vYpYu/62cShFUqb3DyssO01TGm449idb9h6iemQI1dbM5JLurVi59BfWTg0iNeEYb4zsDBt+PFVetT5f206IXe/6+8Ydo7isVys+nTqT4ef2ZsK4d3jwwp6EVNUbu4OZdhCw5elNRaUe0JYHiBb9gyQ1uJZWrlSkVm677AmtPGzHIq08e/cWrVwCgkBsrr8e5CTok4TaovRu8zalvy5H6wFaOYA9RR8ZXTn0bvO2NG+37/ywx+o/056B+u/Hmar/rAEIjyvUuf2B6Qn5hukpGbRYGSR/szZ+L63r12LZlp0M6tSS4ylp9O/YCqUUh44nFKttpRRz/1rC9J9/p0aVykx55wX/KG0wFAETJdw3jFEylCl7j5zgn83x/PnvVqpXjEYpRVz1KrSoX5vVW3YWuV2Hw8GdT7/K978s4N+fpvDeMw/TuqlFziKDoRQojTklEakoIvNEZKv7bwWLcgNFZLOIbBORRz3kY0Rkn4isdm+DPY495i6/WUSsu8zFxAzfGcqUu0acQ+/Wjdm27zD7jyXSqUkcIsI1Q/px56sfM++9p4mrXqXQ7f715x/8+c9K/v72E6IiTTghQ9lTSi7fjwK/KaVedhubR4FHPAuIiB14HzgP2AssE5FZSqkN7iJvKqVey1OnOTAaaAHUAH4VkcZKKb+7spZ4T0lE7CKySkRmu/ctLXGeelaWvIaI/C4iM0Ukwi1rIiIL3O1tFJHxJX1dBv+wNn4fB44ncmGPdizbspPOTeIAuKhvFxxOJ1v3WM/n5Ed8fDzd2rc2BslQbnA4nQVufmAE8Ln7/8+BCzRlOgPblFI7lFJZwBR3vYLanaKUylRKxQPb3O34ndLoKd0DbAQ8g295WWJPCrDkdwN3AfWBK4EPgXfcbc50129VEhdi8D+vTZvLyq27Sc9yOYx8/tB1AGzetZ/ElDTWbN3JeZ3bFLrdXTt3EleresEFDYZSwsfhucoistxjf7xSqjAv2VWVUgcAlFIHREQ3zFAT8FxvsRfo4rF/p4hcDSwHHlBKnXDXWZKnjj6ffTEp0Z6SiNQChgCfFLJqfpbcDjjd28nZ+Oq4PiQAlFL/FkdvQ+mxbuc+pj11C7+NvZ+HLxlA12b1AGjftD4zXn2EV76cgbMIb5CLFi6kbfPG/lbXYCgyPrqEH1VKdfTYvAySiPwqIus0W0G9nVNNaGQnLeY4oAHQFjgAvO5DHb9S0j2lt4CHgby+mTpL7El+lvw94EsgEbjcLXsT+F1EFgFzgYlKqQQ/XUO+VA7Tu2DXjwnWynck6F25BcGuWdjZsKI+FE7dGL1r+brDKVp5lIWreI7F21uOU5GcqR8unr7hkFbeEn0isxkJerfjV1bUY9uhBO443hubPQDiejFtI3zStRNKKS4Zfjsjr72FbQ0GISLUseuvwelQZGVl8dyYp/h13jyUUqSmpnBep9aoTG93dHvSQW071cMqsAMn1e2566gA62R/tiT98GJo+jGtPDNM/1nM3W7lHt1MK23fWT9yUj08AFmyBFvX4bnkIfv172mOqGpauTNMOz/O0XTrKYTYYP1QaYZdf68GzZ+glYu9NrJ3g5c8u2FXffkcfQzDgCPbtXIAqsRZHysh/OUSrpQ61+qYiBwSkeruXlJ14LCm2F6gtsd+LWC/u+1TP24R+RiYXVAdfyP+TDOdq2GRocBgpdTtItIXeFApNVREqgJHcVnZ54DqSqnr89S9BBiglLrRvX8V0FkpdVc+56sBDMTVo2oCtFFKZeYpczNwM0BcXFyHiRMn+nw9OQ6LdRsWH5/dwqM606KCIzONoJBwL7lVAAKrb81qPVLetTcn0a2NAnDm8wNKztKvwQpVWYSEeV9DWpZep/1HEshMOERolbq55HGVXG1s3bSeuvUbEhTkMvBBFh9qVnYW8Tt2EBgYSLXq1RERAgICCXbqXwCwMG7KZiclLZ2IMP1DVIc49WtwlOjf95RNL0/K1H+mVoQF6tNpBNqFlJQUIiJyGwjJStfrY7HmDAs9c/J5XASI/qDTYkDGlnxUK0+VICICvb9rFex9b7kO6M8rORbfP4BVWxb069dvhVKqY6EqeeoismLoR4v0eUs8mH1L95VKqQ7FOM+rwDEPR4eKSqmH85QJALYA/YF9wDLgcqXU+pMGzV3uPqCLUmq0iLQAvsY1ilUD+A1oVBKODiXZU+oBDHc7MoQAUSLylVLqypMF8lhiTwptlZVS+4EJwAQRWYfrxX1FnjLjgfEAHTt2VH379vX5Yg4n6hexJmXpjZVVniKrnlLCltXUbul9z1s9iLMtjIZVT8nqIRZnka/JqpcEsGmXfiFmy6xdNG3n/Qa/bJ8+DcbLbz5J+pHdNLzk0VzyT/q4PoebbrqB9z//htqNXXl36kTrjcnjjz1GSkoKr735dq4wQtF7/tGWVzH6uSZnWAX+XrGWHh3yRCcX61Fuu0VPyRGq72kUvqekp1F1/cLQ6uEBLF6yhG5dc/cqgvzUUzqSab1+LTZAv5C8sD2lpfba9KzmvSDa0VD/rC5KT8nWuIflsZKilLzvXgamisgNwG7gEjj10v6JUmqwUipHRO4EfsE1HTJBKbXeXf8VEWmL6713J3ALgNtgTQU2ADnAHSVhkKAEjZJS6jHgMQCPntKVnpYYuBBYp6m+DGgkIvVwWfLRnB6q80JEBuJyg8wWkWpAJXc9Qzll0dwfOLhkJi1uekN7/MihgyQnJVKvYf7zQkopZs74nklTppq4doZyTWlEdFBKHcPVA8or3w8M9tifA8zRlLsqn7ZfAEp8BXpZLJ59RUT+FZG1QD/gPjjl6j0HQCmVA5y05BuBqR6WXMf5wDoRWeOu85BSSj9xYChz1iz+k/HPPkrTq18gpJLegWfF0kW069i1wCR8JxP1zZk9m5IaijYY/IFyqgI3QyktnlVKLQAWuP/XWmJfLblF3fuB+4urp6F02Be/jZCwMDZOfITIOs2JadKFqp2H5iqzbPFC2nfpVmBbdrudOXN/5fJRl7BzZzwvjX2VqGhrxwSDoazIb57WcBoTZshQ6gy+/Ho+nLuMZte9TPLu9aTs2Zjr+NHDh/h51ncMGn6RT+1Vq1adH+b8gsPhoGWzxpzTuwezZnxfEqobDEXG6XAWuBlMmCGfiQzWOwrEKL0DRHqAfiI6xMLbLcAGsWHe57CaJ7Hy7qtcV99LOJKmn5OMi9I7D0AgGRaegodS9a6/sl8fyPW1HzZ6ydKP7Cbpx7Hcc8dtPPLE/3IN0z1y/71ceeVVdGqeOxttUI7egyzIZic8IogvP/mQzMxMLr/qGg7s2gE99e7UtoxkrZwju5CsDGy7VucuHxGjLw84wvWOC1aeX4dS9V52VmkLNhzU6zpjjd7vJyvHyYDIdD78Jrdjw7iLW2rLR+1YqJVTT+9oVsWpj/gOoNAvXwjf9LtWntjnOn07yxbjaOS7o1tyQJRWHl7b2tktxOfW/YfpKfmG6SkZtFgZJH8RP/NtbrrlNh578imveaNffv6Jq66+pkjt2u12lv6zjAsvGF5wYYOhFFHOgjeDMUqGMiDj+H7SDu3kuhtv0h6Pq1ef3bt3Fbrdtf/+y/CLRtKqVUvqxcUVU0uDwb84HM4CN4MxSoYy4MiqeVRu25/gYO+oF8eOHeXff9fSvr3v6wezs7O59Y67GHbBxQwfOoRZ303zp7oGg18w3ne+YeaUDKVOdtIxwmt6rz/av28fd99+KxdccCGVY2N9bu/rKd+wectW1q5cRrTxvDOUU4zR8Q3TUzKUOvbQSHLSc0/gb9+2jXN6dadr9x689uZbPrflcDh47Y23eOp/jxmDZCjXOJUqcDOYnpKhDAgIDceRkTsc0sGDB2jYuAkPPvIoAYVIxf79zB+oWKECfXv39reaBoNfcZZOmKEzHmOUfMTKZTc0UB/XKyxZ77LbPFRf/i8Bu+ZhfCJD78q99ZjeNbdXHb17bOMAfdRqkvTth2MdF21gpD6Q5l8qm8oZ3oE0ruiX27V7YUI99m7ZwA9xp+eN9uRksCd1Pz/EdeCKDfo109lRp2PW7du7l9dee41vv53KlPfHEpiwx6u8CtRHancG6B2CbRkpIFlIYO64a858gnc6omtYtJWolddRehfvak30ruUDGlbUytOz9ffj5H8PEp58go6Vc9f7cas+XmG32voFyoHZ+heDivkEqz1uEUG8el19PqxIhz5OI84cbCne95g49e70QTF1tPJDFssgAOr6HnPXbxiXcN8ww3cGLVYGyR+ERcVw/FBuox1pC+CEM4cMH/xi4+Pj6dGzB2HhYaxctZr+PfUpDQyG8oRSqsDNYIySoQxo3rUPB+O3sj779MLjGFsAHYMieSoxnqZd+vLzbwss69955x088MADvPDCi1SpokusaTCUPxw5qsDNYIySoQwICY/ggjsfY1rakVzyq8KqcXN4DZo3bczhI/ohQoDQkFBq1NAPmxWHbbv2kZXtyo+0auNW7nj2TbbtMsHmDf7BuIT7hjFKhjLhwI4t1M8ztxMgQsPAUKIiI0hL14cUAjin/zn8/ps+dE1ROHb8BPc8PoaeV9zBxu276H7Z7Qy66SEC7HZ6XH47H0/61m/nMpy9GKPkG8YoGcqEfds2UdfC4eCa0SN57b2PiN+1h5TUVK+x9nPO6c9PP/3EwYPFz06ya88+qrfoBMBHzzxI9SqVePL2a/jjy3e47qLBdG3TgmWr9QnyDIbCYCI6+IbxvjOUCV0GX8xvi/6ic1AUIXkyu/br2Z0Lhw6k34hLSUhMIis7m5ioKKIrVCAwMJBKlSpht9toUL8e27bvIM4qpqwPpKa5vBgPHj7CPS/+wuP/e4pXx00kft8BKsVEc263Djz/1CPFuVSDATCLZ33FGCUfCSVbf8DiPrNyFbYn6d/ubUC43bsxp0V08j4W0cCPpuvdZmse2qqVH6xp4bmW4cRu0Y8Oiq6nlYtjF/ZUb9fzIY28o3UPrD+KSht/5pkfF/DI1Rdy4/BzCQp03Y4qOJxXXn6JV15+CYDMzEyWLFvOa2Nf4u8V6zh8YD+B7rIbf5tO3LnnaPVJrNxUK49Qp9NnN23XmXlzfuC3+Qv4aMIXrF27loeefIb27dtTq1Yt1/mdoI8FD4kWbtA29JHUsyweTLUy9OnQk2367/nfw3qN7mkVxt+rbFzYyjti9zc7vd/EI4L0X3JF9MOnKsd6cKVmxiH9gcP6OIYSbBGr2xaAM6KytzhN/xlZLZuokW2hD4DF91OSGJdw3zBGyaDFyiD5rX27nadvGMUrX87kg2k/88akH5j41B30ats8VzmHw8FVN97KH3/9jSMnm/N6dGRw3x6MHf8l1Zo2ZGCvLsXWpVeP7vTq0R0VGIrNbmf48P9mhPGr2tfykh1MtDK3Bn9TGi7fIlIR+AaIA3YClyqlvKy5iAwE3gbswCdKqZfd8m+AJu5iMUCCUqqtiMThygK+2X1siVLq1pK4BjOnZCgzHE4nAXYbW/cc4NCJBIY/+DIPvvM5WVlZp8rE79rN8hWrCA8PY/r7LzL9/Ze44ZKhtG/RmJS0dD759ocyvAKDwXccOc4CNz/wKPCbUqoR8Jt7PxciYgfeBwYBzYHLRKQ5gFJqlFKqrVKqLTAd+M6j6vaTx0rKIIExSoYyJCgwgIRfv+SKAb2oWy2WAV3a8OF3c6nXoi1PPvsCW7fvYNv2HVSoEEOtmjXo3+104jebzca1Fw9hzDufkpBkkbTPYChHKKejwM0PjAA+d///OXCBpkxnYJtSaodSKguY4q53CnFlF70UmOwPpQqDMUqGMiUgwM4nT9xO/06tiT9wmK+euZvWLVrw1vsf0q5bby4cfSU74nfyyvPPeNWtV6s6w/v3ZOj1d7NklfGQM5RvfDRKlUVkucd2cyFPU1UpdQDA/Ve3urwm4BmXa69b5kkv4JBSynMyup6IrBKRP0SkVyH18hkzp2Qoc2w2G2/ddx3jvvuFO179mOuuvZZJE8ezeOkyfpo7j1EjL6Jr505w2NtZ472n7ueLH35n9J2P0KFVMx665Vrat2hKUFAxXPIMhhLAmZ1VcCE4qpTKNxe8iPwK6OKAPeGjKrrAhnknvC4jdy/pAFBHKXVMRDoAM0SkhVIqycdz+ozpKRnKBSLC7RcPZPlnr7Jn7z7ad+/Dzt27ef2l5+nVXR80NCUtnaSUNC4Y0I+1P39Dt/ZtuPWx56jcri/dLryap//3OE6nWfthKB/4a/hOKXWuUqqlZpsJHBKR6gDuv4c1TewFanvs1wJOBaMUkQDgIlwOEyfPmamUOub+fwWwHfBOiuYHTE/JR45m6z+qSiF6ux6QsFcrd1pEFceZo3WnzgrQR4+ukOodFRugypr5+uY7DNTKA/N5LYnJ1rvgZoXpdcq0h7Ajytv9u0a4vteS2W6Yl6wi8FXbrqxct5Exb3zAm2+/y7WXjKBF4wY0bdmGZo0bIiLUimvAY69/xGOvf4TD4SAzK4vh5/fn9xlTSEhK4uFnXmbV8mVEBNpwDY+fZmey/ru0Z+aQ5VDsTcntVh8bZv0z2ZuUqZVXDNVfs1hk5UgOjtHKs7L0RrVujP4+ygwJREkAmSEVcrfjUJDsHVm+guj1P5ijd9eukWEddulQmD5ad0TjOK08xKk/t+xbql06kRRZW1MaqmiWUgBkhliHoiqLfrSf5owKYhZwDfCy++9MTZllQCMRqQfsA0YDl3scPxfYpJQ69RATkVjguFLKISL1gUbAjpK4AGOUDFqsDFJp0b5lM2ZNeJclK9fyw68LmDzzJ1a++CbVq1blnltu4Oarr+CZR+5n5dp1vPvRp2zZsZOIiHBqtO5GdGQEdWrVZPqMWV4GyWAoK0rJKL0MTBWRG4DdwCUAIlIDl+v3YKVUjojcCfyCyyV8glJqvUcbo/F2cOgNPCsiOYADuFUppc+HUkyMUTKUa7q2b03X9q0ByA4M5/sff2Hi19/w8JgXOHj4CHVr1eTWay7jg1eeIyY6io9ee+GUIcqJqZ5f0wZDqeLM8WlOqVi4h9j6a+T7gcEe+3MAbeIypdS1Gtl0XC7iJY4xSoYzBrvdzsjhgxk53PXbcjqdiAg2dfoN1PSMDOUVZ+n0lM54jFEynLHYbO4JMRO9xXAGUErDd2c8xigZDAZDKeCjS/hZjzFKBoPBUAqYnpJvGKPkI1HBet9pe+J+rVwy9KFvVESsvrxyYMtI9JJXsQik7LBox9ZFH0w0I1gfbTo6xyIadFAYAcd2ao8FhkRq5UE2Re1QbxdmW9IBbfkAi3ZyKuhdfxEL/3WbPpJ6hkM/rhen0RHgaE4gNoHQgNznCUEfeR2g44EFWnlaq0FaeUSS3pU/Ef01B9gKN0d2IsNBjlKWkbPzEhbmHU0coJojQSvPrljXsq0Ii8/bKhDpgv36noPdHsiJCO/PI0r0kfpTHXoH7wMpFpH9gRZhFkszShBjlHzDGCWDFiuDZDAYioYzx9pIGk5jjJLBYDCUAqan5BvGKBkMBkMpYIySbxijZDAYDKWAWafkGyUakFVEYkRkmohsEpGNItJNRCqKyDwR2er+W8Gi7kAR2Swi20TkUQ95DRH5XURmikiEW9ZERBaIyGr3ecaX5HUZDAZDYXFmZxW4GUo+SvjbwM9KqaZAG1zpdIuVGRG4G7gL+AS40i17B3jTnRGxGfBuyV2SwWAwFJ5SSvJ3xlNiRklEonAF8fsUQCmVpZRKoPiZEe2A072d9JetjiscO+5zmYxvxSSnUlxZq2Aw/JewOR05+RokpyMH9LmOzipKck6pPnAEmCgibYAVwD3kyYwoIr5mRuzi/v894EsgkdPh1t8EfheRRcBcYKLbAObCncXxZoC4uDgWLFhQnOsrGrtWa8UpmQ7+2u6dugJ0sjJm1yqtODUtncXL9cfOFDLT09i6ZlkumXdqQU/0aTxY/k8hz6xfy1VYDgNZ6WnsWLvcp/IlknvAR4It5ClpaaxfWdjPr3As2FyizetY60za09YWmTfB62mcCTsB/iothcorJWmUAoD2wF1KqaUi8jaaoToLLDMjKqV24eqBnT6g1EQR+QUYiKtHdYuItFFKZeYpNx4YD9CxY0fVt2/fQlxOybJgwQLKkz5FwVxD+eBMv4YzXX8LnnceXHO1RNTQBg1WSuE8/C/A2FLXrJxRknNKe4G9Sqml7v1puIxUsTMj6lBK7VdKTVBKjQBygJbF1N9gMBj8glJqK0ERqBT9Y0wl7kLCYk+mmDirKTGjpJQ6COwRkSZuUX9gA6czI4IPmRFFJAhX0qlZVudye+oFuv+vhmtMxTpFpsFgMJQy6sT2xs6Da7zCLp3sJTmPbrQe2zuLKOl1SncBk9yGZQdwHS5DWNzMiHk5H3hbRDLc+w+5jaLBYDCUC5RSW20VG6JS9iMec0sne0nO1CNnfS8JStgoKaVWAx01h4qVGVFT937g/qJpaTAYDKWDOrG9sTMrZcvJuaWTvSSVdtT0ktyU9Dolg8FgMLjJO7dk5pK8MWGGDAaDoRTx7C2ZXpI3pqdkMFiQkJDAwoULWbx4sWVOIIOhsJzsLTn3Lja9JA2mp2Qw5OHEiRM8/PDDTJkyhRYtWnDs2DFq1arFTz/9REiIRdZFg6EQqBPbGytb4Bac2aaXlAc5W98ARcS3Je+lR2XgaFkrUUzMNZQPzvRrKI/6H1VKDSxrJc4GzlqjVN4QkeVKKZ2n4hmDuYbywZl+DWe6/obiYeaUDAaDwVBuMEbJYDAYDOUGY5TKD/+FxITmGsoHZ/o1nOn6G4qBmVMyGAwGQ7nB9JQMBoPBUG4wRslgMBgM5QZjlIqIiEwQkcMiss5DVlFE5onIVvffCh7HHhORbSKyWUQGWLSZX/1XRWS5iPRx738vIhd4HN8sIv/z2J8uIhcV4nruE5H1IrJORCaLSEh++uSpO9B9/m0i8qiHvIaI/C4iM0UkQkRiROSYuLOciUg3EVEiUsu9Hy0ix0WkSPelu/1pIrJJRDa62z/TrsEuIqtEZLZ7/4zRX0Rqi8h892e/XkTuOdOuwVD2mC+t6HyGK9OtJ48CvymlGgG/ufcRkea4ckK1cNf5QETsmjat6jd1H+8N3OH+fxHQ3X28EpACdPNoq5u7TIGISE3gbqCjUqolrnQho630yVPXDrwPDAKaA5e5rxd3m3cBnwBXulPUHwSauY93B1advA6gK7BUKeX0RW8NbwM/K6WaAm2AjWfgNdzj1vskZ5L+OcADSqlm7nbucOtxJl2DoYwxRqmIKKX+BI7nEY8APnf//zlwgYd8ilIqUykVD2wDOmuatapvB5y4UsKfzKX8N6d/hN2B2UCsuKgHpBcyp1QAECoiAUAYrky/Vvp40hnYppTaoZTKAqa463nq7cxH7zfz7PtkSPMiIlG4jPanAEqpLPfD60y6hlrAEFwP35OcMforpQ4opVa6/0/GZVxrnknXYCh7jFHyL1WVUgfA9QMFqrjlNYE9HuX2umU+1XcnOAwDFgLj3GVXAC3FlUCxO7AY2Izr7bE7rh+tTyil9gGv4Uq6eABIVErNzed6PMnv2t4DPgJuBb5yy0718ID6wLeczrlVKL3zUB84Akx0D399IiLhZ9g1vAU8jOvhe5IzSf9TiEgc0A5YeqZeg6FsMEapdBCNrFC++Eqpu5RSHZRSv7v3M4H1QHvcwxW4DFN3Cvmm6B7jHwHUA2oA4SJypa/Vdeq6ddyllOqtlBrmfnMG9xuuuze3UymV4VJBIoAOwD++6p2HAFyfxTilVDsgFc0wUXm9BhEZChxWSq0obN3yoH8uZVztTAfuVUolnYnXYCg7jFHyL4dEpDqA++9ht3wvUNujXC1cw2O+1rdiEa4hq0il1AlgCaeNUmHeFM8F4pVSR5RS2cB37jZ80cfXawPcYfuhAjAMlxEFV6/vOrcOKYXQO68ee5VSS93703AZqTPlGnoAw0VkJ66hq3NE5KszSH/cOgbiMkiTlFLfucVn1DUYyhZjlPzLLOAa9//XADM95KNFJNj9ZtcI/ZucVX0r/gZuAda499fi6jXVwdWL8pXdQFcRCXN7NPXHNR/giz7LgEYiUs89lDjaXS8/FuOa0F/ssX8vxZgHcM+f7RGRJm5Rf2DDmXINSqnHlFK1lFJx7vP/rpS68kzRH1zdFFxzehuVUm94HDpjrsFQDlBKma0IGzAZ1/xLNq63vBuASri8i7a6/1b0KP8EsB3XvM8gD/knuLzeyK++hQ5VcA1x3OghWwD8UoTreQbYBKwDvgSCrfTBNcQ3x6PuYGCL+/qe8OFcDwFZQKh7P859HZcV8ztpCyzHZZxn4HqTPqOuwd1WX2B2fvdEedQf6OluYy2w2r0NPpOuwWxlv5kwQwaDwWAoN5jhO4PBYDCUG4xRMhgMBkO5wRglg8FgMJQbjFEyGAwGQ7nBGCWDwWAwlBuMUTKc0YiI3xdJisjwk1GqReQCj8CghWljgYh0LLikwWDwxBglgyEPSqlZSqmX3bsX4IpabTAYSgFjlAz/CdzR0V8VVz6of0VklFve191rOZlnaZJHHp7BbtlCEXlHTucwulZE3hOR7sBw4FURWS0iDTx7QCJS2R0WCBEJFZEpIrJWRL4BQsviczAYznQCyloBg8FPXIQrokMboDKwTET+dB9rhyuX1X5coZl6iMhyXJGneyul4kVkct4GlVKLRGQWrugK0wDc9kzHbUCaUqq1iLQGVvrtygyGswjTUzL8V+gJTFZKOZRSh4A/gE7uY/8opfYqV9K31bjC0TQFdihXfitwhY0qDr1xp1VQSq3FFWrHYDAUEmOUDP8VLLswQKbH/w5cIwT5lc+PHE7/bkLyHDMxuwyGYmKMkuG/wp/AKBGxi0gsrp5Lfjl1NgH13cnoAEZZlEsGIj32d+LK1wMwMs/5rwAQkZZA68IobzAYXBijZPiv8D2uIbM1wO/AwyqfdPBKqXTgduBnEVkIHAISNUWnAA+5s9k2wJWh9zYRWYRr7uok44AIEVmLK3usSTJnMBQBEyXccNYiIhFKqRS3N977wFal1JtlrZfBcDZjekqGs5mbRGQ1roSI0bi88QwGQxliekoGg8FgKDeYnpLBYDAYyg3GKBkMBoOh3GCMksFgMBjKDcYoGQwGg6HcYIySwWAwGMoN/weF7D4+kjsP2QAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import cartopy.crs as ccrs\n", "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n", "from matplotlib import colorbar, colors\n", "import cartopy.feature as cf\n", "\n", "# Draw coastlines of the Earth\n", "ax = plt.axes(projection=ccrs.PlateCarree())\n", "ax.add_feature(cf.BORDERS)\n", "#ax.coastlines() \n", "ax.add_feature(cf.COASTLINE)\n", "\n", "#adding ejes\n", "xticks=([-120,-100,-80,-60,-40,-20,0])\n", "yticks=([-75,-60,-45,-30,-15,0,15])\n", "ax.set_xticks(xticks, crs=ccrs.PlateCarree())\n", "ax.set_yticks(yticks, crs=ccrs.PlateCarree())\n", "lon_formatter = LongitudeFormatter(zero_direction_label=True,number_format='.1f')\n", "lat_formatter = LatitudeFormatter(number_format='.1f')\n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter)\n", "\n", "#adding grillas\n", "\n", "ax.gridlines(draw_labels=False, xlocs=xticks, ylocs=yticks)\n", "\n", "#plot data\n", "tendencia.plot(robust=True)\n", "\n", "plt.title('Tendencia 81-10')\n", "plt.xlabel('longitud')\n", "plt.ylabel('latitud')\n", "\n", "# tamaño correcto de barra\n", "ax.set_aspect('auto', adjustable=None)\n", "\n", "\n", " \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import cartopy.crs as ccrs\n", "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n", "from matplotlib import colorbar, colors\n", "import cartopy.feature as cf\n", "\n", "# Draw coastlines of the Earth\n", "ax = plt.axes(projection=ccrs.PlateCarree())\n", "ax.add_feature(cf.BORDERS)\n", "#ax.coastlines() \n", "ax.add_feature(cf.COASTLINE)\n", "\n", "#adding ejes\n", "xticks=([-120,-100,-80,-60,-40,-20,0])\n", "yticks=([-75,-60,-45,-30,-15,0,15])\n", "ax.set_xticks(xticks, crs=ccrs.PlateCarree())\n", "ax.set_yticks(yticks, crs=ccrs.PlateCarree())\n", "lon_formatter = LongitudeFormatter(zero_direction_label=True,number_format='.1f')\n", "lat_formatter = LatitudeFormatter(number_format='.1f')\n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter)\n", "\n", "#adding grillas\n", "\n", "ax.gridlines(draw_labels=False, xlocs=xticks, ylocs=yticks)\n", "\n", "#plot data\n", "pv.where(pvalues < 0.05).plot(robust=True)\n", "\n", "plt.title('pvalues de tendencias 81-10')\n", "plt.xlabel('longitud')\n", "plt.ylabel('latitud')\n", "\n", "# tamaño correcto de barra\n", "ax.set_aspect('auto', adjustable=None)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# hagan ejercicio con tmax" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 }