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Outline

l Surface wind structure of tropical cyclones and a parametric 

wind field model for tropical cyclones

l Tropical cyclone intensity and size estimation techniques 

based on satellite observations

l Tropical cyclone gale forecast techniques
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Visible image of typhoon In-fa (2021) from the satellite FengYun-4B, 
when the typhoon approached the coast of East China 4

Vmax: 38m/s

Pmin: 965hPa
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Visible image of typhoon In-fa (2021) from the satellite FengYun-4B, 
when the typhoon approached the coast of East China 5

Make a cross-section 
through the center of the 
typhoon as shown by this 
red line.



Scalloped region represents the cloud boundary of the convective features in a TC. The 
shading is for threshold values of 25, 30, 35, 37.5, 40, and 45 dBZ in radar reflectivity. 
The open arrows represent the flow of ice outward from the eyewall region. 
(Hence and Houze, 2012) 
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Idealized vertical structure of a tropical cyclone
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Idealized vertical structure of a tropical cyclone

The convective features are accompanied by a vertical circulation with inflow at lower 
levels and outflow at upper levels. There are compensated descending motion of the 
air in both the eye region and also the outer region away from the center.



The primary circulation of the tropical cyclone generally has maximum azimuthal 
mean wind in the planetary boundary layer, which is anti-clockwise in northern 
hemisphere and clockwise in southern hemisphere. It gets weakened gradually 
upward as shown in this azimuthal mean wind chart.

Azimuthal mean wind 
(Yu, 2005)
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Surface wind
（the winds at 10m height 

over the ocean/land surface)
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Schematic chart of the radial distribution of surface wind speed 
and pressure in a tropical cyclone

10



maximum surface wind near the center
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Pressure distribution: V-shape
The maximum winds appear at the radius with largest pressure gradient.



maximum surface wind near the center

Wind radii: Rmax, R34, R50, R64
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Except for the maximum wind speed, several 
characteristic wind radii are also adopted in 
order to describe the surface wind structure in a 
more quantitative and vivid way.



Surface wind of an idealized TC moving toward 
NW over the ocean (Ye, 2017) 13

Notable wavenumber 1 asymmetric structure: the winds are stronger to the front-right of 
the storm path than to the rear-left.
Such an asymmetric structure is generally a result of the movement of the storm.

Characteristic wind radii of a typhoon 
approaching the coast of East China 

Blue arcs: 34 knots
Yellow arcs: 50 knots
Red arcs: 64 knots



Surface wind of a TC during the landfall process： 
the shift of maximum wind from the front-right 
quadrant to the rear part of the storm (Ye, 2017)  

14

When a tropical cyclone is affected by land, the winds generally weaken 
significantly on the side near the land.

Characteristic wind radii of a typhoon 
making landfall on the coast of South China



A parametric wind field model of tropical cyclone: 

Shanghai Typhoon Institute Engineering Typhoon 

Model (STI-ETYM)
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(Developed to supply guidance for the prompt assessment of risks and impacts that arise from the 
significant high-speed winds in TCs.)



Gained popularity for their satisfactory modeling accuracy with limited TC parameters 
(location, intensity) as inputs 

Parametric wind field model

Ø Pressure model

Ø Wind field model: Batts, Shapiro, CE, Yan Meng, Vickery

Ø Planetary boundary layer (PBL) model: （U10/U）

Gradient model 

Momentum model vertically averaged in boundary layer

Holland (1980,  2008)

Willoughby (1995,  2006)
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Compared with the atmospheric numerical models which account for the dynamic and thermodynamic 
processes comprehensively, the parametric wind field model is much simpler and can better meet the 
requirement to simulate several millions of virtual typhoons needed for hazard assessment.



Pressure model

Holland, 1980
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Balance Models Characteristic Methods Applicability

Gradient Batts（1980） empirical / slowly, symmetric TC

Momentum

Shapiro（1984） symmetric pressure
truncated 
spectral 

formulation
fast, symmetric TC

Yan Meng（1995） friction velocity
perturbation 

analysis symmetric TC after landing

CE （1992）

Vickery(2000)
asymmetric 

pressure
finite 

difference all, especially asymmetric TC

Vickery et al. 2000；Peng et al. 2005

Wind field model
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Based on Chow(1971),  Cardone et al.(1992) solved the Navier-Stokes equations by finite 
difference method, and the model was applied by the US Army Crops of Engineers(CE).

Wind field model
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Momentum balance equation for PBL: 

pressure gradient force, Coriolis force, viscosity force, surface drag force

                 vertical mean wind in PBL

                 environmental gradient wind

                 central pressure

                 eddy viscosity coefficient

                 drag coefficient

                PBL height

                moving velocity of TC
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1992 1996
2008-
2013

2015-
2016

 First proposed

 (Cardone)

Improved, finer grid scale
           asymmetric pressure
 ( Thompson and Cardone)

  Applied to the typhoons affecting 
Southeast China（Xiao et al.）

 Pointed out the problem caused by neglect 
of velocity advection term (Li and Hong)

1995-
2009

TC hazard assessment combined with 
track model ( Vickery)

2017-
2021

Reconstruction of parametric scheme
Pressure model change with height

 (Fang et al.)

Wind field model
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2008-
2013
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2016

 First proposed

 (Cardone)

Improved, finer grid scale
           asymmetric pressure
 ( Thompson and Cardone)

  Applied to the typhoons affecting 
Southeast China（Xiao et al.）

 Pointed out the problem caused by neglect 
of velocity advection term (Li and Hong)

1995-
2009

TC hazard assessment combined with 
track model ( Vickery)

2017-
2021

Reconstruction of parametric scheme
Pressure model change with height

 (Fang et al.)

Wind field model
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Li and Hong (2015): neglecting the effect of typhoon movement on circulation not only 
underestimate the maximum wind speeds, but also affect the location of the maximum wind 
speeds in the simulated wind field, thereby affecting the estimation of the return-period wind 
speeds at a given location.



1992 1996
2008-
2013

2015-
2016

 First proposed

 (Cardone)

Improved, finer grid scale
           asymmetric pressure
 ( Thompson and Cardone)

  Applied to the typhoons affecting 
Southeast China（Xiao et al.）

 Pointed out the problem caused by neglect 
of velocity advection term (Li and Hong)

1995-
2009

TC hazard assessment combined with 
track model ( Vickery)

2017-
2021

Reconstruction of parametric scheme
Pressure model change with height

 (Fang et al.)

Wind field model
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Fang et al. (2020): proposed a pressure-field model considering the altitude change, which was 
then included in a height-dependent parametric wind field model considering roughness change.



PBL model

Fang et al., 2020Vickery et al., 2009

Variation in wind speed reduction ratio with 
wind speed
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The PBL model was generally defined as the reduction ratio of the winds at the gradient level to those 
at 10 m above the underlying surface.
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Pressure model:

Wind field model:

Holland B parameter

Radius of maximum wind speed

Drag coefficient

Height of boundary layerEnvironmental geostrophic wind

Pressure difference between 
 TC center and environment 

PBL model:              Wind speed ratio（U10/U）

---- Holland et al.，2008

---- Chow, 1971

Key parameters in the parametric surface wind model
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(1) Rmax

Relationship between Rmax and latitude (left) and ΔP (right)

2 3

2
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Key parameters in the parametric surface wind model
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(2) Holland B  parameter

Sensitivity experiments for B 
(difference in shape and Vmax)

Key parameters in the parametric surface wind model
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Relationship between B and latitude (right) and ΔP (left)



Adjustment of the drag coefficient has a significant impact on 
the wind field in the inner core region of the tropical cyclone 

(6-7% variation in Vmax)

(3) Drag coefficient
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Key parameters in the parametric surface wind model



Fang et al.(2020)

(3) Drag coefficient
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Key parameters in the parametric surface wind model

The declined pattern of the drag coefficient at high winds: increasing with the wind speeds up to 
about 30 m/s, but decreasing with the wind speeds when the wind is stronger than 30 m/s.



Group 1 2 3

Vmax (m/s) 30 40 55

Rmax (km) 39.89 35.62 30.77

(4) Height of boundary layer
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Key parameters in the parametric surface wind model

The height of the planetary boundary layer in TC varies 
between 300 and 1000 m, and it increases with the distance 
to TC center.
Sensitivity experiments showed that the greater the depth 
of the PBL, the smaller the simulated maximum wind, the 
larger Rmax.



(5) Environmental geostrophic wind
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Key parameters in the parametric surface wind model



Nested domains with the inner most 240 km * 240 km 
at a resolution of 2 km

Distance to the TC center (km)
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Initial wind field Simulated wind field

Vmax (m/s) Rmax (km)

Observed 40 35.62

Simulated 41.95 31.31 

Idealized TC

Simulation experiments
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Evolution of simulated wind field

Typhoon HAIKUI(2012)
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Simulation experiments

The observed and simulated maximum wind speed of HAIKUI (2012) 

Simulated value
Best track data

Landfall time

August 2012



Simulated (solid line) vs Observed (dots) velocity
Evolution of simulated wind field

Typhoon HAIKUI(2012)
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Simulation experiments
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Simulated TC wind dataset for the NWP region (1949-2018)

Tracks and intensities for the 46 simulated typhoons (randomly selected).



Before 1980 After 1980
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Simulated TC wind dataset for the NWP region (1949-2018)

Comparison between the simulated maximum wind speed and the best track data
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Comparison of simulated intensities over 
ocean with those from the best track dataset 
issued by the CMA for typhoons generated 
after 1980. 

Corresponding intensity ratio of the 
simulated results to the best track dataset.
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Comparison of simulated intensities over 
land with those from the best track dataset 
issued by the CMA for typhoons generated 
after 1980. 

Corresponding intensity ratio of the 
simulated results to the best track dataset.



39

Comparisons of the simulated intensities with those from the best track dataset issued by CMA 
for the 46 simulated typhoons in time sequence.
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Comparisons of the simulated intensities with those from the best track dataset issued by CMA 
for the 46 simulated typhoons in time sequence.
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Comparisons of simulated wind speeds (WS) with those observed at the Wengtian weather 
station for 5 typhoons. R is the distance from the station to the typhoon center.

Wengtian weather station: 
located in northeast Hainan Island
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Simulated TC wind dataset for the NWP region (1949-2018)
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Thank you for your attention !
Questions?
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wind field model for tropical cyclones

l Tropical cyclone intensity and size estimation techniques 

based on satellite observations

l Tropical cyclone gale forecast techniques
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Tropical Cyclone Annual Book (1949-)

Contents of the Tropical Cyclone Annual Book
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https://tcdata.typhoon.org.cn/en/index.html
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Timeline about the evolution of analysis procedure and other 
important events related to the CMA best track dataset

ØOpen ocean analysis

Aircraft reconnaissance first Satellite imagery first
Methods similar to Dvorak technique Dvorak technique

Aug. 15, 1987 2013

ØCI-MSW conversion table      1985            1994              2004             2013                                          

ØTime interval

6-hourly 3-hourly for TCs 
landfalling in China

2017

Post-TC and post-season 
analysis

  1950        1960              1970            1980            1990           2000             2010
Reanalysis during 1969-1972 Annual post-season analysis

1949                               1971                                                                                         2016                                  

Bai LN, 2021
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Vernon Dvorak(1972, 1984)

Over the open ocean：
Dvorak technique has been widely used 
globally since it was proposed in 1972 
and modified in 1984, irreplacable up to 
now.
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Major steps of Dvorak analysis（C.T. Chan，2013)
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A major defect of Dvorak technique:
Depend heavily on the forecaster’s experience

Olander and Velden, 2007

http://tropic.ssec.wisc.edu/real-time/adt/adt.html
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http://tropic.ssec.wisc.edu/real-time/adt/adt.html
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the ADT analyses tool installed in CMA
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                             Basin
Atlantic East-central 

Pacific
Western North 

Pacific
North and South

Indian Ocean South Pacifific

Vmax(kt)
ADT 11.12 9.18 11.24 10.35 12.18

Dvorak 10.40 9.71 11.19 10.27 12.08

MSLP(hPa)
ADT 9.71 6.78 8.43 6.99 8.97

Dvorak 10.17 7.13 10.80 6.67 10.20

The RMSE between ADT and OpCen(operational tropical cyclone 
analysis and forecasting centers) Dvorak estimates of TC intensity in 

different basins in 2018 （Olander and Velden, 2019）



Hu and Yu (2021）
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Data type Method RMSE（kt） References

data of 
geostationary 

satellite

Visible & Infrared data
(DVORAK Technique)

determinantion of
cloud types 9.71-12.08

Dvorak et al.1975,1984
Velden et al.1998

Olander et  al.2002,2019

IR data
(Objective methods)

linear regression

10.18-14.48

Ritchie et al.2012,2014
Fetanat et al.2013

Lu  et al.2013,2014,2021
Hu et al.2021

Zhuo andTan.2021

K Nearest Neighbor
（KNN）

Deviation Angle Variance 
Technique（DAV-T）

Convolutional Neural
Network(CNN)

......

data of other 
satellites

Passive microwave data

Stepwise Regression

12.0-19.8

Bankert et al.2002
Yu et al.2006

Hoshino et al.2007
Jiang et al.2019

multi-variable statistical 
method

KNN

.......
Infrared data（multi-

channel）
Multiple Linear 

Regression(MLR)

4.08-14.70

Zhuge et al.2015
Wimmers et al.2019

Chen et al.2019
Zhang et al.2020

Passive microwave 
data(image data 、wind 

data...)

Stepwise Regression

CNN
......
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TC  intensity estimation techniques developed in STI

Intensity
AMSU-A Upper Level 

Warm Core Method
Yu et al（2006）

Convective Core 

Extraction (CCE) Scheme
Lu and Yu（2013), Hu (2021)

2005 2010 2013 2017 20212006

SMAP Radiometer Scheme
Sun et al（2021）

IR_CNN Scheme
Hu（2021）



Convective Core Extraction (CCE) 
technique for intensity estimation

Lu and Yu，2013
Hu, 2021
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Data sources

• IR image datasets

     MTSAT   http://weather.is.hochi-u.ac.jp/sat/GAME/

                    resolution: 0.05 x 0.05 lat/lon degree
• Best track datasets

CMA    http://tcdata.typhoon.org.cn/en/index.html

            6 hourly lat, lon, vmax, pmin

JTWC  http://www.metoc.navy.mil/jtwc/jtwc.html

            6 hourly wind radii

                
59

http://weather.is.hochi-u.ac.jp/sat/GAME/
http://tcdata.typhoon.org.cn/en/index.html
http://www.metoc.navy.mil/jtwc/jtwc.html


Convective Cell Extraction (CCE) technique for 
intensity estimation – methodology 

Convective cells are searched by Convective-Stratiform 

Technique (CST, Adler et al. 1988).

Minimum TBB pixel are regarded as the core of a convective 

cell if its gradient meets a given criterion.

Vmax=23 m/s Vmax=30 m/s Vmax=55 m/s 60



Number

Intensity

Distance

TC 
intensity

Attributes of the 
convective cells

Convective Cell Extraction (CCE) technique for 
intensity estimation – methodology 
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What is the best radius for searching the convective cells?

Convective Cell Extraction (CCE) technique for 
intensity estimation – sensitivity tests
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What is the best radius for searching the convective cells?

Convective Cell Extraction (CCE) technique for 
intensity estimation – sensitivity tests

Number of the convective cells
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What is the best radius for searching the convective cells?

135km  ~   maximum value of the radius of maximum wind

Convective Cell Extraction (CCE) technique for 
intensity estimation – sensitivity tests

Intensity of the convective cells

64



Dependent samples
(1494)

Independent samples
(406)

MAE(m/s) 7.3 7.4

RMSE(m/s) 9.2 9.6

Convective Cell Extraction (CCE) technique for 
intensity estimation – sensitivity tests

Number

Intensity

Distance

TC 
intensity

Attributes of the 
convective cells

stepwise regression
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Dependent samples
(1494)

Independent samples
(406)

MAE(m/s) 5.5  (7.3) 5.9  (7.4)

RMSE(m/s) 6.9  (9.2) 7.7  (9.6)

Bias correction for 
weak and strong TCs.

Convective Cell Extraction (CCE) technique for 
intensity estimation – sensitivity tests
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Dependent samples
(2676)

Independent samples
(1221)

MAE(m/s) 1.77 1.75  (5.4)

RMSE(m/s) 2.42 2.42  (7.3)

Persistency in intensity: 
The correlation coefficient is 0.973 between current Vmax and the Vmax 6 hours 
before (sample size: 2676).

Dependent samples
(1494)

Independent samples
(406)

MAE(m/s) 5.5  (7.3) 5.9  (7.4)

RMSE(m/s) 6.9  (9.2) 7.7  (9.6)

Convective Cell Extraction (CCE) technique for 
intensity estimation – sensitivity tests

Based on the best track Based on the real time warning67



Convective Cell Extraction (CCE) technique for 
intensity estimation – application

Evaluation in 2014

CCE technique was put into use as a guidance 
for the best track analyses in CMA since 2014. 

CCE
(2014-2016)

Dvorak
(Knaff, 2010)

MAE(m/s) 4.6 4.1

RMSE(m/s) 6.5 5.7
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method Channel RMSE（kt）

Stepwise Regression

IR(11μm)

13.16
CCE Deep Neural Network 12.64

Convolutional Neural 
Network 10.59

69

Application and improvement of CCE 
technique in Atlantic

3.4%

19.5%



Structure optimization of convolutional neural networks

1

2

3

Optimization of 
input range 

Optimization of 
convolution and 

pooling layer

Optimization of 
Dropout

Training results of experiments with 
different input ranges

optimum input range：114×114
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1

2

3

Optimization of 
convolution and 

pooling layer

Optimization of 
Dropout

model structure RMSE（kt）
 C1P1C2P2C3P3C4P4F1F2F3 13.21

 C1P1C2P2C3P3C4F1F2F3 12.80
 C1P1C2P2C3C4F1F2F3 12.57

C1C2C3C4F1F2F3 13.80

The RMSE of different models in test samples

Pooling is only done
 at the lower levels (P1,P2)

kernel size：7×7

Structure optimization of convolutional neural networks

Optimization of 
input range 

Convolution kernel 
size

Error of training set
（MAE / kt）

 Error of validation set
（MAE / kt）

1×1 10.31 11.33
3×3 7.11 10.18
5×5 8.28 10.18
7×7 7.97 9.66

7×7（Dropout） 8.37 9.60

Training results with different
 size of convolution kernels
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1

2

3

Optimization of 
convolution and 

pooling layer

Optimization of 
Dropout

(a)

(b)

Error distribution of TC intensity estimation on test set
（a）without Dropout（b）with Dropout

Structure optimization of convolutional neural networks

Optimization of 
input range 
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Method Channel RMSE（kt）

DAV IR(10.7μm) 14.7

DAV IR(10.7μm)
12.9

(V≥34 kt)

Histogram matching
 approach IR(10.7μm) 14.8-15.47

KNN IR(11μm) 12.7

ADT IR(PMW) 11.67
Stepwise Regression

IR(11μm)

13.16
CCE Deep Neural Network 12.64

Convolutional Neural 
Network (CNN) 10.59

73

3.4%

19.5%

Application and improvement of CCE 
technique in Atlantic



《2009 Yearbook of Tropical Cyclone》

QuikScat
Lu（2005-2009）

SSMI和SSMIS
Lu（2010-2012）

ASCAT
Lu（2013-now）
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《2012 Yearbook of Tropical Cyclone》
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TC Size estimation techniques developed in STI

Size
Brightness Temperature

Profile (BTP)
Lu et al （2017）

2005 2010 2013 2017 2021-2022

QuikSCAT
Lu（2005-2009）

SSMI, SSMIS
Lu （2010-2012）

ASCAT
Lu（2013-Now）

2006

SMAP radiometer
Sun et al （2021,2023）

IR_Deep Learning
Lu et al（2022）



Brightness Temperature Profile (BTP) technique for size estimation 
– methodology 

Schematic diagram for the definition of concentric annuli (every 
16 km). The black filled circle is the TC center. The large black 
circles are the annuli at the radii of 64, 128, 192, 256, and 320 
km. Other annuli are not shown here for a visibility purpose.

Mean brightness temperature is calculated 
in 20 annuli every 16km from the TC center.
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Distance to TC center(km)
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Mean BT

Mean BT 
Difference

TC 
intensity

TC 
size

Attributes of cloud-top 
brightness temperature (BT) in 

the defined annuli

Schematic diagram for the definition of concentric annuli (every 
16 km). The black filled circle is the TC center. The large black 
circles are the annuli at the radii of 64, 128, 192, 256, and 320 
km. Other annuli are not shown here for a visibility purpose. 78

Brightness Temperature Profile (BTP) technique for size estimation 
– methodology 



79Knapp and Kossin，2007

HURSAT dataset

Brightness Temperature Profile (BTP) technique for size estimation 
– methodology 



Storm center 32 64 96 128 160 192 224 256 288 320km
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Co
rre

lat
io

n 
co

ef
fic

ien
t

 

 
GOEBT(3550)
METBT(4099)
GMSBT(1975)
MTSBT(3373)
FYBT(3551)
Total(16548)
GOEgBT
METgBT
GMSgBT
MTSgBT
FYgBT
Total gBT

Correlation coefficients between R34 and BTP attributes from different 
satellites. Solid: mean BT. Dashed: difference in neighboring mean BT.

Positive in the inner core 
region.

Negative further away.
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Brightness Temperature Profile (BTP) technique for size estimation 
– methodology 



Brightness Temperature Profile (BTP) technique for size estimation 
– sensitivity tests 

Box-plot of the difference in size as estimated from different satellites.

26km

55km

9 km
15km

The difference in TC size estimation using observations from different 
satellites is operationally acceptable. 81



Brightness Temperature Profile (BTP) technique for size estimation 
– application

R34 of 721 TCs from 1980 to 2009 were obtained for 13726 samples. R34 
(km)

Mean 184

25% 148

75% 215

82

Geographical distribution of R34 during 1980-2009.



83https://tcdata.typhoon.org.cn/en/index.html



Previous studies Dataset used for 
estimation

Dataset used for 
validation 

RMW R64 R50 R34

Demuth et al., 2006 AMSU Aircraft 
reconnaissance and 
best track

/ 13 25 31

Mueller et al., 2006 IR Aircraft 
reconnaissance data

27 / / /

Kossin et al., 2007 IR Aircraft 
reconnaissance data

21 27 37 45

Knaff et al., 2011 Scatterometer, AMSU, and IR 
et al.

H*wind / 24 33 68
 

Knaff et al., 2016 IR Best track / 22 37 69

Lu et al., 2017 IR Best track / / / 27~65

This study IR Best track 13 18 30 43 

Improvements with machine learning algorithms（Lu et al. 2022）

（general regression neural network & support vector machine）
84





8:2 Minimum 
MAE and 

reasonable 
distribution

Best algorithm 
a n d 
pa r a m e t e r s : 
SVM for RMW, 
R34;
GRNN for R50, 
R64

Training (R34) Evaluation (R34)Parameter settings Optimization (R34)

RMW
R34-1
R34-2
R34-3
R34-4
R50-1
R50-2
R50-3
R50-4
R64-1
R64-2
R64-3
R64-4

SVM

RBFN

DT

GRNN

MLP

…
…

R=10 Grids
R=20 Grids
R=30 Grids
R=40 Grids
R=50 Grids
R=60 Grids
R=70 Grids
R=80 Grids

…
…

Algorithm and 
Parameter 

testing



Evolution of R34 for In-fa (2021)



Evolution of R34 for Chanthu (2021)



Ocean (Satellite) TC size parameters Estimation error (nmi)
MAE RMSE

Pacific (GMS, GOE, 
MET, FY-2, MTS, 
HIM)

RMW 8.10 10.89
R34 25.89 34.89
R50 11.76 15.43
R64 10.24 13.06

Atlantic (GOES, 
MET)

RMW 15.16 22.80
R34 28.23 40.09
R50 16.72 23.80
R64 12.43 16.54

Western North 
Pacific (FY-2)

RMW 5.95 7.85
R34 23.11 28.65
R50 18.64 23.64
R64 11.73 14.09

Model Used data RMW R64 R50 R34 

Knaff et 
al.(2011)

Scatterometer，
AMSU，IR et al / 13.00 17.80 36.50

Kossin et 
al.(2007) IR 12.42 16.04 22.35 27.16

Knaff et 
al.(2016) IR / 12.00 20.00 37.00

TCSE (This 
study) IR 15.16 12.43 16.72 28.23

AlexNet Framework：convolutional neural networks
(on-going work)



TC size estimation based on observations from different satellites (independent samples)



FY-2G和FY-4B: mean difference <5km, larger difference as compared to FY-4A

2205 Songda



Wind field from SMAP radiometer

SMAP radiometer：Up to 70m/s，no 
precipitation contamination

Sun et al.，2021 92

The SMAP satellite is in a near-polar orbit at an 
altitude of 685 km. It has an ascending node time 
of 6 pm and is sun-synchronous. In approximately 
3 days it completes global coverage with an exact 
repeat cycle of 8 days. The L-band passive 
microwave radiometer mounted on the SMAP can 
be used to measure sea surface wind speed, with a 
spatial resolution of 40 km and a swath width of 
1000km. Compared to Ku-band scatterometers 
(e.g., QuikSCAT), the L-band radiometer can 
provide more accurate measurements of high 
winds (~70 m/s) in extreme weather conditions.



Wind field from SMAP radiometer

SMAP radiometer：Up to 70m/s，no 
precipitation contamination

Sun et al.，2021 93

RMW：38 km

R64：26-95km

R50：40-115km

R34：113-170km

Asymmetric 
wind distribution



Sun et al.，2023

Combining observations from active and passive microwave 
remote sensing instruments can provide long-time series 
data for monitoring changes in TC wind structure



SMAP

AMSR2

AMSR2

SAR

Sun et al.，2023



Off-shore and landfall TC

Satellite

In situ (sonding)

Radar

In situ (surface AWS)

L band sounding

（Courtesy to Dr Xu Yinglong）



Haikui 2012（48m/s vs 30m/s） Mujigae 2015（45m/s vs 33m/s）

Satellite estimation vs in-site observation



2021/8/6

Synthetic analyses with observations from wind towers, 
AWS, and ground-based radar

Position of two AWS stations 
relative to TC center (Haikui)

2min mean wind

Intensity of Haikui at landfall is 
estimated to be 45-48m/s！

Jie Tang et al., 2013
Lina Bai et al., 2019

Conversion ratio for winds at different heights 
(wind tower observations)

Lekima wind field 
(AWS)



Typhoon field experiments in China 
(novel observation platform and instruments)

Mobile 
vehicle

Trailer

UAV

Buoy array

Rocket 
sounding

Unmanned ship, 
large UAV, airship

Aircraft

Landfall 
process

Air-sea 
interaction

Intensity 
change

Fine scale 
structure 
and 
precipitation

Multi-platform 
coordination
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Typhoon Hunter（since 2007）
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Validation of Doppler Wind Lidar during Super Typhoon 
Lekima

Zhoushan

Radial wind
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Thank you for your attention !
Questions?
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l Surface wind structure of tropical cyclones and a parametric 

wind field model for tropical cyclones

l Tropical cyclone intensity and size estimation techniques 

based on satellite observations

l Tropical cyclone gale forecast techniques



Numerical weather prediction technology

Statistical prediction technology

Model output statistics/downscaling technology



STI/CMA Tropical Cyclone Forecast Dataset for WMO 
Typhoon Landfall Forecast Demonstration Project (TLFDP)



Shanghai Weather and Risk Model System (SWARMS)
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Sample products from SWARMS
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Sample products from SWARMS



Yang et al. 2023

Intensity forecast skill of NWP models

(a)
(b) (c)24h 48h 72h

Mean absolute error of intensity forecast (m/s)

UKMO JMAGSM

SWARMS-TC



、、、、
、、

Intensity forecast skill of NWP models

Forecast skill as relative to CLIPER

Yang et al. 2023

24h forecast 48h forecast



Evolution of EPSs during 2015-2019

Name Horizontal resolution 
(km)/vertical levels Member Initial 

disturbance
Model 

uncertainty

ECMWF-EPS
32/91（2015-2016.3）

51 EDA-SV SPPT-SKEB
18/91（2016.3-2019）

JMA-GEPS
40/60(2015-2017.6)

27
 SV

SPPT
 40/100（2017.6-2019）  SVs-LETKF

MSC-CENS

66/40（2015-2015.11）

21 EnKF SPPT-SKEB 50/40（2015.11-2018.9）

 39/45（2018.9-2019）

NCEP-GEFS  34/64（2015-2019） 21 EnKF STTP

UKMO-GEPS
50/70（2015-2017.07） 24

 ETKF SPPT-SKEB
 30/70（2017.7-2019） 36

PCIF \ 20-51 历史相似 \

Xin et al.，2021

Mean errors during 2018-2019

Intensity forecast skill of EPS



Evolution of EPSs during 2015-2019

Name Horizontal resolution 
(km)/vertical levels Member Initial 

disturbance
Model 

uncertainty

ECMWF-EPS
32/91（2015-2016.3）

51 EDA-SV SPPT-SKEB
18/91（2016.3-2019）

JMA-GEPS
40/60(2015-2017.6)

27
 SV

SPPT
 40/100（2017.6-2019）  SVs-LETKF

MSC-CENS

66/40（2015-2015.11）

21 EnKF SPPT-SKEB 50/40（2015.11-2018.9）

 39/45（2018.9-2019）

NCEP-GEFS  34/64（2015-2019） 21 EnKF STTP

UKMO-GEPS
50/70（2015-2017.07） 24

 ETKF SPPT-SKEB
 30/70（2017.7-2019） 36

PCIF \ 20-51 历史相似 \

Xin et al.，2021

Mean errors during 2018-2019

Intensity forecast skill of EPS

All EPSs have weaker bias.

Different performance among EPSs.



Intensity forecast skill of EPSs during 2018-2019
（L：ensemble mean；R：probability forecast）

Reference method：PCIF（Chen et al. 2016） Xin et al. 2021
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TC wind structure forecast at 18 UTC 25 Oct 2020, where the black 
diamond line and black circle are observed TC track and observed 
R34 respectively. 
The red square line and red circle are TC forecast track and forecast 
R34 respectively.

Lu et al. 2022

Change of MODE scores with lead times 
(the results for ECMWF-IFS)

R34

NWP Forecast skill of characteristic wind radii



Statistical prediction technology

CLIPER scheme: TCSP, PCIF

CLIPER + environmental factors: WIPS

Size forecast: application of empirical wind field model



TCSP (Climatology and persistency scheme)
A statistical prediction scheme for tropical cyclone 
intensity by setting up linear regression equations with 
predictors describing climatology and persistency traits 
of intensity change.
Used in CMA mainly as a reference scheme to evaluate the 
skills of other guidance.    

Yu et al. 2006



TCSP predictors (9): 
Latitude, longitude, maximum wind speed
Their changes in past 12hr and 24hr

Monthly (May to October) stepwise regression equations 
are set up every 12hr until 72hr.



Nepartak(1601) Omais(1605)



PCIF: a probabilistic climatology-based tropical cyclone 
intensity forecast scheme

Developed by selecting analog 
historic cases with given criteria 
for climatology and persistency 
predictors.

Name of predictors

The PMIN change during the last 12 h (hPa)

Minimum central pressure at initial time (hPa)

Latitude of TC location at initial time (°)

Longitude of TC location at initial time (°)

Direction of TC movement during the last 24 h (°)

Julian day of initial time (Days)

TC lifespan (hours)

Underlying surface conditions at TC center
Chen et al. 2016



Procedures

ΔDIR24

Na ≥
Namin

Range of JDAY0; 
searching

N

End

Searching

N

Ranges of  LAT0,  LON0, 
PMIN0,  and DPMIN12

TC name, 
t0

Na ≤ 
Namax

Range of DIR24; 
searching

ΔJDAY

Na ≥ 
Namin

N
+ 22.5 °

Na ≤ 
Namax

Y

Y

N

Na ≥ 
Namin

N
+ 15 Days

Start

LAT0, LON0, PMIN0,  
DPMIN12, DR24, JDAY0

ΔLAT,  ΔLON, ΔPMIN,  
and ΔDPMIN12

Y

Y

Adjusting initial 
intensity

output

Y

Step 1
Step 1: calculation of the 
values of the factors for the 
specific TC to be predicted and 
determining the historical 
sample pool to be considered

LTC,  Land or not History 
pool

Step 2,3Step 2: 4 factors are 
considered together to select 
the analogous cases from the 
pool; A search radius is set for 
each factor
Step 3:  If the number of the 
selected cases N_analog is 
less than Namin, the search radii 
for 4 factors are increased by 
half of the original search radii 
in turn until  is reached Namin .

Step 4

Step 4: DIR24  
Step 5Step 5: JDAY  

Step 6

Step 6: Adjusting and outputting



Forecast skill of ECMWF-EPS as relative to PCIF (Brier Score) 

The probabilistic intensity prediction of the PCIF are better than the 
ECMWF-EPS for lead times shorter than 72 h in general and for all lead 
times for the STY, STS, and TD categories. 



Intensity forecast skill of EPSs during 2018-2019
（L：ensemble mean；R：probability forecast）

Reference method：PCIF（Chen et al. 2016） Xin et al. 2021



WIPS
A statistical prediction scheme for tropical cyclone 
intensity by setting up linear regression equations with 
predictors describing climatology and persistency traits, 
synoptic features, and underlying surface conditions.
Used in CMA as an objective forecast guidance.



WIPS predictors: 
(1) Latitude, longitude, maximum wind speed
      Their changes in past 12hr and 24hr
(2) Synoptic situation: 
EFC, VWS, vorticity, divergence, temperature difference
(3) Underlying surface condition: 
Maximum potential intensity, POT, distance to land



Eddy flux convergence
u and v are the radial and azimuthal components of wind;
r is the distance from the center;
The prime means the deviation from the azimuthal mean;
L refers to the storm relative flow.

The asymmetric structures of the outflow layer associated 
with upper level synoptic-scale systems (e.g. trough) can 
produce large eddy imports of angular momentum. 



Vertical wind shear:
The wind difference between 200 and 850 hPa over the storm. 

Small vertical wind shear favors the intensification of a 
tropical cyclone, and strong vertical wind shear favors the 
weakening of a tropical cyclone.



)0.30(1816.05.1085.66 SSTeMPI 

Maximum potential intensity:
Upper bound of the intensity of a tropical cyclone, 
determined by SST (and environment temperature)

Development potential:
Difference between the current intensity and MPI



12h 24h 36h 48h 60h 72h
pdvmax12 pdvmax12 pdvmax24 dis36 pdvmax48 pdvmax60
dis0 vs dis24 pdvmax36 vs vs
vs dis12 vs vs dis36 vx
ddis(12,0) dis24 v-6 dlon(0,-12) dlat(0,-6) dlon(0,-6)
REFC dmpi(24,12) v-6 v-6 v-24

dmpi(36,24) dis48 dis72
dlat(0,-18) dlon(0,-6) dis24

dis36
dvmax(0,-6)
div200

Predictors for East China region

Top 3: Development potential, vertical wind shear, distance to land



Predictors for South China region

Top 3: Development potential, distance to land, 500hPa height anomaly

12h 24h 36h 48h 60h 72h
pdvmax0 dis12 pdvmax36 pdvmax12 pdvmax36 pdvmax48
dis0 pdvmax24 ha500 dis24 dis36 dlon(0,-24)
 dvmax(0, -24) dvmax(0,-12)vx ha500 vx dis-12
ha500 ha500 t t v-12 dlat(0,-6)
mpi vx dis12 dmpi(48,12) dlon(0,-24) dmpi(36,12)
vs dis24 vx dlon(0,-6)

vs div200
div850



Predictors for Far Sea region

Top 3: Development potential, distance to land, past intensity change

12h 24h 36h 48h 60h 72h
pdvmax12 pdvmax24 pdvmax36 dis-24 pdvmax48 lon0
dvmax(0,-18) dvmax(0,-18)dvmax(0,-12) dvmax(0,-12) dis-24 dis-12
dis-24 dis-24 dis-24 vmax0 mpi48 dvmax(0,-18)
vs dmpi(24,0) dmpi(36,12) lon0 dvmax(0,-12) vor850

vs lon0 mpi48 lon0 mpi60
lon0 vs pdvmax36 mpi60 mpi72
dvmax(0,-6) vs mpi36 dmpi(72,48)

vor_lon pdvmax60
ddis(24,0)
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TC size can be forecast based on its strong 
correlation with the change of TC intensity.

Lu et al. 2011
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Official track and intensity forecast + STI-ETYM

Application of empirical wind field model



1822号台风山竹

Ensemble forecast STI-ETYM

Gale forecasts: probability

Chen et al. 2023

Application of empirical wind field model
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Model output statistics/downscaling technology:

Wind forecasts in regions with complex topography



Ø Model and data

1）SWARMS-Rapid Refresh

         Resolution：3 km

         Forecast lead time：24 hours

         Duration: 2018.8 – 2019.8

2）Number of stations：~5600 AWS

Model Output Statistics

Xue et al. 2023

Spatial distribution of observations (blue pluses) (a) and 
terrain height in east china (b)
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Box plots of bias for different wind velocity. The box area 
represents the 25th and 75th percentile values, the horizontal 
line inside the box is the median value, and the whiskers 
represent the 5th and 95th percentile values. The number of 
samples within different thresholds is listed below the figure.

The bias has an overall downward trend with the increase
in observed wind speed, from overestimation to underestimation.
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 Variation in MEs (asterisks) and box plots of bias with
the standard deviation of the grid-scale terrain height (σg). 
The red line is the correlation coefficients between the bias 
and σg of different thresholds.

Large errors of forecast wind speed are more likely to 
appear over complex terrain (insufficient drag force in the 
model).
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Variation in MEs (asterisks) and box plots for bias 
as grouped by the errors in model terrain height. 
The red lines are the correlation coefficients for 
different thresholds.

ME increases by 10% - 20% as the positive terrain 
height increases every 200 m (from (-20~20 m) to 
(400~600 m)), and ME increases by 20% ~ 30% as 
the negative terrain height difference increases 
every 200 m (from (-600~-400 m) to (-20~20 m)).

There are more stations with overestimated terrain height 
than those with underestimated terrain height.
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The variation in the bias (a) and surface wind speed (b) with slope angles. The red
and black boxes in (b) represent the 10-m wind speed from SWARMS-RR and
observation data, respectively. The red line in (a) is the correlation coefficients
between the bias and slope angles of different thresholds.



 Correlation coefficients between potential predictors in MOS calibration model and 
bias. Linear regression coefficients in three sensitivity experiments are also listed.



The verification results from the independent sample test: the data listed within the brackets 
are the improvements in three sensitivity calibration experiments compared to SWARMS-RR.

SWARMS-RR



A typhoon case: Lekima (2019)

Significant improvements 
in wind forecasts

SWARMS-RR MOS



Dynamical downscaling

(1) Analytical Model

• Linearized Model (Jackson and Hunt, 1975)

• WAsP（Mortensen and Landberg, 1993）

2. Diagnostic Model

• CALMET（Scire et al, 1993）

• AERMET (US EPA, 2004)

3. Computational Fluid Dynamics (CFD)

• FLUENT

• OpenFOAM

1. Single-model downscaling 2. Multi-models downscaling

Partial list of the mesoscale meteorological models 
(MMM)

All MMM are based on the ensemble averaged 
turbulence model, while large-eddy simulation (LES) 
requires instantaneous values at the boundaries. 
(Yamada and Koike ,2011, JWEIA)
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Fang et al, 2019

- Distributing wind speed based on aerodynamical 
parameters of 2D terrain (simulated offline using CFD 
method）
- Very high computational efficiency for large area such 
as that covered by a tropical cyclone (~ minutes)

The two-dimensional (2D) terrain was modeled as uphill and 
downhill segments with various slope angles relative to the incoming 
flow.
The wind speed-up ratio around the 2D terrain were simulated 
offline using CFD method. 

A novel downscaling model:
 STIDM (the Shanghai Typhoon Institute Downscaling Model)
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Steps of STIDM：

1. Obtain the aerodynamic parameters of 
the simplified terrain based on numerical 
simulation and wind-tunnel test;

2. Redistributing the wind speed at the 
corner point of a mesoscale grid within 
the downscaling grid based on terrain 
elevation data, land use type data and the 
aerodynamic parameters, to implement 
the wind field downscaling calculation.

(Tang et al, 2019, US16578181)
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SWARMS-RR STIDM
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SWARMS-Rapid Refresh

Horizontal grid spacing: 3 km

Horizontal grid spacing: 750 m



Shanghai Typhoon Institute
STI

Products information

1. Horizontal resolution: 750 m
2. Varables: u and v at 10 m
3. Forecast lead time: 24 h
4. Update frequency: hourly
5. Data interval: 1 h

Forecast wind field of In-fa (2021)

SWARMS-RR-STIDM (750m)



• STIDM shows improvements for strong winds (> 8.0 m/s) 

and complex terrain region ( σh >200m ）

SWARMS-RR (3km)

STIDM (750m)
SWARMS-RR (3km)

STIDM (750m)

SWARMS-RR (3km)

STIDM (750m)

SWARMS-RR (3km)

STIDM (750m)



Shanghai Typhoon Institute
STI

Hagupit (2020)

AWS in mountainous region

SWARMS-RR 
(3km)

STIDM (750m)

SWARMS-MESO 
(9km)
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Thank you for your attention !
Questions?
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http://116.62.195.108/AP_demo2/Page/Home/qdyb.lj.html


