{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Dimensions: (lat: 72, lon: 144, time: 510)\n", "Coordinates:\n", " * lat (lat) float32 88.75 86.25 83.75 81.25 ... -83.75 -86.25 -88.75\n", " * lon (lon) float32 1.25 3.75 6.25 8.75 11.25 ... 351.2 353.8 356.2 358.8\n", " * time (time) datetime64[ns] 1979-01-01 1979-02-01 ... 2021-06-01\n", "Data variables:\n", " precip (time, lat, lon) float32 ...\n", "Attributes:\n", " Conventions: COARDS\n", " title: CPC Merged Analysis of Precipitation (excludes NCEP Reana...\n", " platform: Analyses\n", " source: ftp ftp.cpc.ncep.noaa.gov precip/cmap/monthly\n", " dataset_title: CPC Merged Analysis of Precipitation\n", " documentation: https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html\n", " date_modified: 26 Feb 2019\n", " References: https://www.psl.noaa.gov/data/gridded/data.cmap.html\n", " version: V2107\n", " history: update 07/2021 V2107\n", " data_modified: 2021-07-09\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset>\n",
       "Dimensions:  (lat: 72, lon: 144, time: 510)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 88.75 86.25 83.75 81.25 ... -83.75 -86.25 -88.75\n",
       "  * lon      (lon) float32 1.25 3.75 6.25 8.75 11.25 ... 351.2 353.8 356.2 358.8\n",
       "  * time     (time) datetime64[ns] 1979-01-01 1979-02-01 ... 2021-06-01\n",
       "Data variables:\n",
       "    precip   (time, lat, lon) float32 ...\n",
       "Attributes:\n",
       "    Conventions:    COARDS\n",
       "    title:          CPC Merged Analysis of Precipitation (excludes NCEP Reana...\n",
       "    platform:       Analyses\n",
       "    source:         ftp ftp.cpc.ncep.noaa.gov precip/cmap/monthly\n",
       "    dataset_title:  CPC Merged Analysis of Precipitation\n",
       "    documentation:  https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html\n",
       "    date_modified:  26 Feb 2019\n",
       "    References:     https://www.psl.noaa.gov/data/gridded/data.cmap.html\n",
       "    version:        V2107\n",
       "    history:        update 07/2021 V2107\n",
       "    data_modified:  2021-07-09
" ], "text/plain": [ "\n", "Dimensions: (lat: 72, lon: 144, time: 510)\n", "Coordinates:\n", " * lat (lat) float32 88.75 86.25 83.75 81.25 ... -83.75 -86.25 -88.75\n", " * lon (lon) float32 1.25 3.75 6.25 8.75 11.25 ... 351.2 353.8 356.2 358.8\n", " * time (time) datetime64[ns] 1979-01-01 1979-02-01 ... 2021-06-01\n", "Data variables:\n", " precip (time, lat, lon) float32 ...\n", "Attributes:\n", " Conventions: COARDS\n", " title: CPC Merged Analysis of Precipitation (excludes NCEP Reana...\n", " platform: Analyses\n", " source: ftp ftp.cpc.ncep.noaa.gov precip/cmap/monthly\n", " dataset_title: CPC Merged Analysis of Precipitation\n", " documentation: https://www.esrl.noaa.gov/psd/data/gridded/data.cmap.html\n", " date_modified: 26 Feb 2019\n", " References: https://www.psl.noaa.gov/data/gridded/data.cmap.html\n", " version: V2107\n", " history: update 07/2021 V2107\n", " data_modified: 2021-07-09" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "\n", "import pandas as pd\n", "\n", "import matplotlib.pyplot as plt\n", "\n", "import xarray as xr\n", "\n", "dset = xr.open_dataset(\"precip.mon.mean.nc\")\n", "print(dset)\n", "dset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'precip' (time: 30, lat: 28, lon: 40)>\n",
       "array([[[ 5.15,  2.73, ...,  0.  ,  0.  ],\n",
       "        [10.73, 10.12, ...,  1.24,  0.03],\n",
       "        ...,\n",
       "        [ 1.96,  1.6 , ...,  0.98,  0.86],\n",
       "        [ 1.97,  1.57, ...,  1.17,  1.23]],\n",
       "\n",
       "       [[ 3.34,  1.97, ...,  0.  ,  0.03],\n",
       "        [ 9.69,  8.94, ...,  1.56,  0.17],\n",
       "        ...,\n",
       "        [ 1.19,  1.07, ...,  0.96,  0.81],\n",
       "        [ 0.96,  0.86, ...,  1.02,  1.07]],\n",
       "\n",
       "       ...,\n",
       "\n",
       "       [[ 5.55,  4.71, ...,  0.04,  0.22],\n",
       "        [ 5.06,  5.8 , ...,  2.96,  0.04],\n",
       "        ...,\n",
       "        [ 0.82,  1.28, ...,  1.45,  1.45],\n",
       "        [ 1.2 ,  1.24, ...,  1.08,  0.76]],\n",
       "\n",
       "       [[10.98,  5.96, ...,  0.07,  0.23],\n",
       "        [16.5 , 17.03, ...,  1.68,  0.  ],\n",
       "        ...,\n",
       "        [ 1.22,  0.77, ...,  0.77,  0.69],\n",
       "        [ 0.88,  0.99, ...,  0.9 ,  0.71]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 8.75 6.25 3.75 1.25 ... -51.25 -53.75 -56.25 -58.75\n",
       "  * lon      (lon) float32 251.2 253.8 256.2 258.8 ... 341.2 343.8 346.2 348.8\n",
       "  * time     (time) datetime64[ns] 1981-01-01 1982-01-01 ... 2010-01-01\n",
       "Attributes:\n",
       "    long_name:     Average Monthly Rate of Precipitation\n",
       "    valid_range:   [ 0. 70.]\n",
       "    units:         mm/day\n",
       "    precision:     2\n",
       "    var_desc:      Precipitation\n",
       "    dataset:       CPC Merged Analysis of Precipitation Standard\n",
       "    level_desc:    Surface\n",
       "    statistic:     Mean\n",
       "    parent_stat:   Mean\n",
       "    actual_range:  [ 0.   59.08]
" ], "text/plain": [ "\n", "array([[[ 5.15, 2.73, ..., 0. , 0. ],\n", " [10.73, 10.12, ..., 1.24, 0.03],\n", " ...,\n", " [ 1.96, 1.6 , ..., 0.98, 0.86],\n", " [ 1.97, 1.57, ..., 1.17, 1.23]],\n", "\n", " [[ 3.34, 1.97, ..., 0. , 0.03],\n", " [ 9.69, 8.94, ..., 1.56, 0.17],\n", " ...,\n", " [ 1.19, 1.07, ..., 0.96, 0.81],\n", " [ 0.96, 0.86, ..., 1.02, 1.07]],\n", "\n", " ...,\n", "\n", " [[ 5.55, 4.71, ..., 0.04, 0.22],\n", " [ 5.06, 5.8 , ..., 2.96, 0.04],\n", " ...,\n", " [ 0.82, 1.28, ..., 1.45, 1.45],\n", " [ 1.2 , 1.24, ..., 1.08, 0.76]],\n", "\n", " [[10.98, 5.96, ..., 0.07, 0.23],\n", " [16.5 , 17.03, ..., 1.68, 0. ],\n", " ...,\n", " [ 1.22, 0.77, ..., 0.77, 0.69],\n", " [ 0.88, 0.99, ..., 0.9 , 0.71]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 8.75 6.25 3.75 1.25 ... -51.25 -53.75 -56.25 -58.75\n", " * lon (lon) float32 251.2 253.8 256.2 258.8 ... 341.2 343.8 346.2 348.8\n", " * time (time) datetime64[ns] 1981-01-01 1982-01-01 ... 2010-01-01\n", "Attributes:\n", " long_name: Average Monthly Rate of Precipitation\n", " valid_range: [ 0. 70.]\n", " units: mm/day\n", " precision: 2\n", " var_desc: Precipitation\n", " dataset: CPC Merged Analysis of Precipitation Standard\n", " level_desc: Surface\n", " statistic: Mean\n", " parent_stat: Mean\n", " actual_range: [ 0. 59.08]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pp=dset.precip\n", "data_c=pp.sel(time=slice(\"1981-01-01\",\"2010-12-01\"),lat=slice(10, -60),lon=slice(250, 350))\n", "\n", "month_idxs=data_c.groupby('time.month').groups\n", "# Extract the time indices corresponding to all the Januarys \n", "jan_idxs=month_idxs[1]\n", "\n", "# Extract the january months by selecting \n", "# the relevant indices\n", "data_jan=data_c.isel(time=jan_idxs)\n", "data_jan" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "#ONI \n", "years_nino=[1982,1987,1991,1997,2002,2004,2009]\n", "years_nina=[1985,1988,1998,1999,2000,2007,2010]\n", "years_normal=[1981,1983,1984,1986,1989,1990,1992,1993,1994,1995,1996,2001,2003,2005,2006,2008]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "nino_idx=[]\n", "nina_idx=[]\n", "normal_idx=[]\n", "\n", "year_idxs=data_jan.groupby(\"time.year\").groups\n", "\n", "for i in years_nino:\n", " nino_idx.append(year_idxs[i][0])\n", " \n", "for i in years_nina:\n", " nina_idx.append(year_idxs[i][0])\n", " \n", "for i in years_normal:\n", " normal_idx.append(year_idxs[i][0])\n", " \n", "data_jan_nino=data_jan.isel(time=nino_idx)\n", "data_jan_nina=data_jan.isel(time=nina_idx)\n", "data_jan_normal=data_jan.isel(time=normal_idx)\n", "\n", "data_jan_nino_mean=data_jan_nino.mean(dim=\"time\",skipna=True)\n", "data_jan_normal_mean=data_jan_normal.mean(dim=\"time\",skipna=True)\n", "data_jan_nina_mean=data_jan_nina.mean(dim='time',skipna=True)\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAELCAYAAAA/cjqaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2rUlEQVR4nO2deZxkVXn3v7/qvWdlmWEZBgcJYEDcQARJFBUVN/B1C74vBpf3Je5b1EjQmMSQGDGY5DXGd4waIijigiAuLEZRUUBZZWfYh3UGBmbv7qp63j/ubShm7nPqdnVXd1X3853P/UzVOfec+5x7q+upc86zyMwIgiAI5iaVmRYgCIIgmDlCCQRBEMxhQgkEQRDMYUIJBEEQzGFCCQRBEMxhQgkEQRDMYWZcCUj6qqSHJF3XULajpAsl3Zr/v8NMyhgEQTBbmXElAPwncNQ2ZR8Hfmpm+wA/zd8HQRAEU4w6wVlM0grgPDN7ev7+ZuAIM7tf0m7Az81sv5mUMQiCYDbSO9MCOOxiZvcD5IpgadFJkk4ATgBQX/9BAzttf1rPiH+RSjWhAOt+nao1p029pf7MaaeBfr+/ityqsfk9heU9WxPj9bvzRRhx7kOz/kZGJ36xvj63qj7gf4xHnYXE/kcnLgJAZdR5xmPVRCP/ZlivL7u8H2je5w9gOn/UtXItJT4YPRNfmLDEZ0mJa623R9aa2ZIJXzDBe9+x2I57w0IOfcXdLfw1zRydqgRKYWYrgZUAQ7stt73e8eHtzll0m//FPPyg/wFy/9iB3gceLa7YstVtY5u3uHX1TZsLy3v2WuG3GfYVxAPPX1RYvvi2MbdN6ouqXqxTmH/LOreN9fp/0Hbb3b4cDpXddnHrNu/n/y3f+bri8j1/4I9XCV0+fNf64jYPPeI3Sijz2lJ/u6syUvy8tG6Df63RhIKdYgVhtYQyclBC6bFwwYT7q6663a2rDAy6dRdsPf2uCV8swSXnLbfLrtjKqjvG+MkrprLn9tMJewJFPJgvA5H//9AMyxMEQeDy6VMfYeU/7cK84QqXnLd85tfYJ0CnKoFzgePz18cD58ygLEEQBC6XnLfchofEMw8Y4JMf3pFPn5qYFXYgM64EJH0T+A2wn6TVkt4BfAZ4qaRbgZfm74MgCDqOT5/6CJ/88E4APGP/ga6bDcz4noCZvdmpesm0ChIEQTBBGmcB43zywzvy8b9by09ePYOCTYAZnwkEQRB0K42zgHGesf8Aw0PqmtlAKIEgCIIWKJoFjPPJD+/UNXsDM74cNFUMLBphn6Nu267893fv7raprB5y61L+BX3rh4vbJKzz5t/n2x3WHAvCsXm+jh5d6F8L51LrV/i29vZK/wO70/CmwvLaX/rmjT33+/0pYQpY37CxsNwSZpZblvgf4/k7F5t03vdm/168/em/cetO+37xKuWCO3d029R8S0XW7+N/LvoeK37+VvGvNbTGv1aPY6U8+Kgvw8A63//BeorNbHs3+22qQ469MVCpFf9wXr+n/+yH9t/ZrZv33ze4dfjW3KX59KmP8A8nFV//mQc8MRs4/NX3dLTfQMwEgiAIJoikw7xZwDjdMhsIJRAEQTBx/ue737Y4ecIzDxhgyxZDkj9d6QBCCQRBEEyc3vmJ5dpx5s0TdPiyeyiBIAiCFqhajTGrJg+juYHQTIfTDyUQBEHQAnWs6VHSRvQ/mcFw+qEEgiAIWsCoN/1HCTVgZr8Att1BPgY4LX99GvDaqZS9kY5eq5oItQf6WXfKU7Yr3wPYtLR4mFsKA1Rn9BVbKmbtnKCVdd/qkPV/4NdZv/dBqbHj8kcLa7Zu8u0O63cXm7AC9G4utlYbvNA3O7x/vlP3Elh6RXGky4Gx4kimAI/u79u3piJ4Dq4tvtbim4tNWAE2X1IsxxCw6ZnFdoKHDG9vajzOie+4xa07/q4XFJYfuOBet83Bw34UzCMGp8/XaMSK7+2qqh959rIte7l1129eVlh+xcPL3TabRov/gAQ8vG5+Yd3Ajb6Z9+jCA906vu5XlaVqxpglPrA8HkH+OEnHNhSvzCMgpygVTn8qmDVKwMNTAN2ApwBaxVMAreIpgHbgKYBW8RRAq3gKoBvwFECreAqgVTwFMNPUMWpNfunnC0Knm9nnpkWoFojloCAIghYosycwCaYtnH4ogSAIghaom1FrckxCDUxbOP3uXSsJgiCYQaoYY02Xg5qTh9M/AthZ0mrgU2Th88/KQ+vfDbxxctL6hBIIgiBogZplR4oySmCmw+mHEgiCIGgBw43V+KRzOp1QAkEQBC1QRYxZ2uIulMA0Utk4wvAvbt6ufLie0NV9/vA15NsfM+TY6Pf4++z1QT8cbnWH4v6qg749/Q5ba27dliXFH72Nu/sf2MFH/I/roBcI0fw2Dzzf9xPYcJgT0xio9BQ/r53P8Z+HVfxxmRO52Gr+s/rc3S936567z3cLy1fu+VO3zX+t39Otu2bL9r4t4yzpKQ6FfECf7weSYsyKQzwPyHdw+eXmFW7d124/rLD8sU3+s+rt9T+3fU5dKuR7f3GkcCDtczIV1BA1QgkEQRDMSeqhBIIgCOYudRP1ZstBTeo7gVACQRAELVClwih+pjQAazJT6ARCCQRBELRAqZnANMkyGTrWY1jSUZJulrRKUtvCqAZBELTC+J5A6ugGJdCRMwFJPcC/AS8FVgO/lXSumSUyRwdBEEwfVethzNJfod2wHNSpM4FDgFVmdruZjQJnksXXDoIg6AjqUGIm0PlKoCNnAsAy4J6G96uB56UaWK1Gbf2G7cqVsCFHCR24PpFQwIkhbnV/8ldJ+CT0Ly1OUNC3wZfBRkfdukXLdissH1zrZ6h78JABt27EaWY9vn35rs94wK37xFMvcutOve2lheUPvcZ/VvPm+WGhn7p4XWH5m3b9rdvmS3e+0K27eOtOheWvGd7stlnRv8atO3Ot/7H++cP7FpZvHPN9Tu55xH/G1RFnE3Ot/+wHH/Tv+5AT13JR1f87GHo44Sewvjik9a4bHnXbIP/vW2P+taaCGhVqlv4dnXCl6Rg6VQkUPdntbqekE4ATAAZpzYEmCIKgFapUGGtiHVSPmUDLrAYaUxDtAdy37Ul5dp6VAAu1Yxfo3CAIZgt1az4TKP4921l06p7Ab4F9JO0lqR84liy+dhAEQUdQp9L06IZfph05EzCzqqT3AucDPcBXzez6GRYrCILgceoGtaZ+Ap0/E+hIJQBgZj8CfjTTcgRBEBRRykQ0wkYEQRDMTupUqDVZUY/loCAIgllKzRTLQd1AynZflUTA8ZQPgVOX7C9B/WEnYH/Nt3O2VN0DxQbc/Wu9xACwqz3VrbvjtcV26Uf90VVumy/sfrlbl+K8xcU29f9nxa/cNocO3eHWnb/xgMLy182/321zy663uHXPH/Rs/ue5bZb3PubWpbj2zmWF5QO3OvksgIWr/c97dbj4C2neA/7ndvjeTW5dZbQ4P0HKPl8b/FwSbCq+lm0d8dtUEn+nifweU0GV5stBYSIaBEEwSzHUFV/yzQglEARB0ALZclCzPYHOVxKhBIIgCFogsw5q4jHcBTvDoQSCIAhaIAsl3f0ew6EEgiAIWqBuFeqxHBQEQTA3iUTzQRAEc5iqVZruCcRMYLpx4vy7pyfDjSdsnXuKH3zKJyHVn+sPkPJVSODmGkjkIOhd79tiL/vv4o/JT5bs77b57qIb3brNdT9+/Z/t8rPC8pQVRurX2Ad2uNOp8WX4myWpMFW+P4DHr7f4Phh7DT3s1v2sXjyu0UTA3Npa/14sur04Xv/wKt9/hIIcHY9TL/57qz+23m1izt8OgI0V+x2kfGKSTPD7YMLdU2I5qAumArNLCQRBEEwTc8JEVNLrSvSxNQ/2FgRBMGcoYyLa9UoA+DJwDmk7pxcQ0T6DIJhjmEG9aeygzqeZEvixmb09dYKk06dQniAIgq6gViqKaPOZgKQPAf+bTGf8HnibmfmJs6eY5AjM7LhmHZQ5JwiCYLZhJupNjmZTAUnLgPcDB5vZ08mSaB3bfumfoPTGsKTnAysa25jZf7VBpiAIgo6nSnMT0ZIB5nqBIUljwDAF+dTbSSklIOnrwN7A1Txh62jAnFQCrZisJc1RWwhNnTRHVXFdZd6w32S9H+L3nlcVm0WmppHnrn22W7fLoG92+MdOWOjdevzwyQ8mnsdNY8XhiTdZn9vmoP7i0NmtsmPPRrfulFte6tZVHimWY3BNa5uNvZud++SYegIwkLgXmxJhoR1c8+UEqqh1M9E28viv/eYcJ6nx1/1KM1sJYGb3SvoccDewBbjAzC6Yeml9ys4EDgb2N+sGq9cgCGYTnagAYHw5qJmfgABON7PPFdVL2gE4BtgLeBT4tqTjzGza9lrLeiNdB+zaTkGCIAi6icxjOH2U+NV8JHCHma0xszHge8Dz2yz6k2jmJ/ADsmWfBcANki4HHnctNbOj2yteEARBZ1Iv4zHcfE/gbuBQScNky0EvAX43JQKWpNlyUOEUJgiCYK5jNN/4bTYTMLPLJH0HuBKoAlcBK6dEwJI0MxG92MwuBl45/rqxbDIXlvRGSddLqks6eJu6EyWtknSzpJdP5jpBEATtoFrvYazJYSU2js3sU2b2NDN7upm9xcwSSZWnnrJ7AkUmDK+Y5LWvA14H/KKxUNL+ZHayBwBHAV+UlLbDCoIgmGaa+QjUTd3vMSzpXcC7gb0lXdtQtQC4ZDIXNrMb82tsW3UMcGauDe+QtAo4BPjNZK4XBEEwldQp4wfQ/bGDvgH8GPgH4OMN5RvMLBF/dlIsAy5teL86L+scXLt+/4EnzdyckLfpUNeJ7qqO3XfKHrzqX+xp/1Zs1z/2ed/+/bJ7nuLWHfnUm926h50w0wsqvn35lSO+4dqSnmLZDx9sLUy3x21V/15stR3cupENfkhrT8J59/u/L/s2+nWVMef5b/Blt2pxeGeA+nq/ndtfyr+lzaGfpxor4SfQ9TMBM3tM0gbgQDO7a6KdS7qIYtPSk8zsHK9ZkShO/ycAJwAM4jtCBUEQTDU1q1CtN4kiWs6ZbEZp6ixmZnVJ10ja08zunkjnZnZkCzKtBpY3vN8Dx40697pbCbBQiUwbQRAEU0wdTdo6qBMo6zG8G3B97ifwuB9+m/wEzgW+IelUYHdgH+DyNlwnCIKgZcosB3UDZZXA30z1hSX9D+D/AkuAH0q62sxebmbXSzoLuIHMbvY9Zq2ujgdBELSHar1CtV4qbERHU0oJmNnFknYBnpsXXW5mD03mwmZ2NnC2U3cycPJk+g+CIGgnxuxIKlPKRELSm8iWZN4IvAm4TNIb2ilYEARBJzO+J5A6ZoOJ6DgnAc8d//UvaQlwEfCddgkWBEHQycwJE9EGKtss/zxMeW/jOUOnhrwdJ2XzrS1+bHg5duTrv76vf619/T+OgT/w5VhTm19YPqhH3Ta/3ujL8cbFxTYFI4ltpgH5uQY87hxb5NZtrvsx+a3q36fezcV1I4t9OWp9fn/zVhd/JdmI74NhWxMRDDz/lqn2BXD8clrub4qozaU9AeAnks4Hvpm//xMiuXwQBHOYOrNjT6DsxvBHJb0eOJxskWtlvrEbBEEwJzFT81/6XaAFSucYNrPvAt9toyxBEARdQ80qVCefT2DGKWsd9DpJt0p6TNJ6SRskrW+3cEEQBJ3K+Ewgecy0kCUoOxP4LPCa8cifQRAEcx2z5nsC3UBZJfBgKIAgCIInqFmF2hyyDvqdpG8B3+fJOYa/1w6hgiAIOh2z7Oh2yiqBhcBm4GUNZQbMSSXg5Q2w1K+CDoiVXk/5AvT6H4X65s2F5Tv/8gG3zeKbFrp159nz3Lqzlz2rsHzZbuvcNvfdvNSt+9Eef1hYvt+SNW6bv93Ti3IOgyp+jreO7ue2uXfEzycwvKP/TLZsLQ5T3LvJ/5wp4aoi7xtr+8ROj9MRvi+pv52UD0Gyz9aaPbmLORRF1MzelqqXdKKZ/cPUiBQEQdD5ZDOB7jcRnSqv3zdOUT9BEARdQd1ErZ4+usFEtLSfQBM6f6RBEARTSClnsS5gqpRAF0x6giAIpo4ySqAbNo5jJhAEQdAC9XzJJ8VcWg769hT1EwRB0BUYs2NjuJQSkPRZ4O+ALcBPgGcCHzSz0wHM7O/bJmFZJNS7fQjgpIlbi2abbqjcDjADbZX6lq1uXdF9Baivvp/KwuLQzz0P+iaYew74oZ8feN5gYfm9m5e4bfo2+PYNtWuLQzxftVfxdQB+vMOBbt1V65cXlr9ll1+7bQ4fWuXWHfSMO9y6v+59TWH5hroftrr+sH8vNuw1XFi++EG/PyU+F1btgM/7DP7NzZY9gbLWQS8zs/XAq4HVwL7AR9smVdAVeAogCOYCVuLoBsouB43/FHwl8E0ze0QJB5MgCIJZT11Ysz2BLtAEZZXADyTdRLYc9O48vaQ/TwyCIJjlGGWWgzr/x3Kp5SAz+zhwGHCwmY2RhZA4pp2CBUEQdDLjsYNSRzdQNp/AMPAe4N/zot2BgydzYUmnSLpJ0rWSzpa0uKHuREmrJN0s6eWTuU4QBEE7sLqweiV9lFAEkhZL+k7+fXijpMPaL/0TlN0Y/howCjw/f7+azFpoMlwIPN3MngHcApwIIGl/4FjgAOAo4IuSiiNpBUEQzBRTNxP4F+AnZvY0MsvLaQ3bX1YJ7G1mnwXGAMxsC5Nc7DKzC8ysmr+9FNgjf30McKaZjZjZHcAq4JDJXCsIgqAtTNI8SNJC4AXAVwDMbNTMHm2PsMWU3RgelTREPixJe9OQV2AKeDvwrfz1MjKlMM7qvCyJAPVMcMIw5Ta+ieu3EPK25TC+LdhOW3VswnXakvj4JKzH+m970G/23KcUlg8+6N/bQd8lgYpzC/s2DLhtvjb/ULdul4UbCsu31ot9KQAW9FXdun36feEXDhXbXmxa6su+dZF/nzZsKm43bw8/1HVfIvx4fX3xvWB01G2T+htx/W/awVSEki5hHZR/xxwn6diG0pVmtjJ//VRgDfA1Sc8ErgA+YGabJi9hOcoqgU+ROYktl3QGcDjw1maNJF0E7FpQdZKZnZOfcxJQBc4Yb1ZwfuEjk3QCcALAIPOaiRMEQTBlTMBZ7HQz+5xT1ws8B3ifmV0m6V+AjwOfnCIxm1I2n8CFkq4EDiX7kv6Ama0t0e7IVL2k48kc0F5i9vgK2mqg0S1zD+A+p/+VwEqARZWdumQvPgiCWcHUeIStBlab2WX5+++QKYFpo6x1kIBXAAeZ2XnAsKRJrdNLOgr4C+BoM2tMXXUucKykAUl7AfsAl0/mWkEQBFOPShxpzOwB4B5J46npXgLc0JI00q6Sjpb0GklFKzCFlF2o/iKZn8Cb8/cbgH+boIzb8gVgAXChpKslfQnAzK4HziK7ET8B3mNmHZDjLgiCoAED6k2OcjOF9wFnSLoWeBYw4Vhskv432Y/l1wFvAC6V9PYybcvuCTzPzJ4j6SoAM1snqX+igjZiZn+QqDsZOHky/QdBELQVUwnjklKzgauZpN8VWSy3Z5vZwwCSdgJ+DXy1WcOySmAst9Uftw5aQqbngiAI5iRlfAGm0Wt4NdkKzTgbgHvKNCyrBP4VOBtYKulksunGJyYiYRAEwazCgGYmotPHvcBlks4hk+wY4HJJHwYws1O9hk2VgKQKcAfwMbJNCwGvNbNp9WprigQ9229xJB9RaiqXsOv37PdV8ftL2fx3a36C+lbfVSTld9C742K3butOxeXVxf79q4z4tue9jpl7NWFRvPUBv3LrcLHt/jkPP8dts2p+oXEbAPeP+rH8N44U2/XvueQRt83Cfv+ZXP/gUwvL1+1XnGcAYHHFd9Hpv6vYQLC+5mG3TQpVfX+KVkj62UzBn5YsO5qdM03clh/jnJP/v6BZw6ZKwMzqkv7JzA4DbmpNviAIgllGByUNMLO/abVt2eWgCyS9Hvhegz1/EATB3MU048tBkv7ZzD4o6QcUqCQzO7pZH2WVwIeBeUBV0layVRYzs4UTETgIgmDWUGYm0P6fzF/P//c8kptS1mO46bpSEATBnKIDloPM7Ir85e+ALWbZRmJuzekHmWqgbKL5ol2vx4C7GiKBBkEQzB1K+QlMGz8FjgQ25u+HgAt4Ivy/S9nloC+SBTn6ff7+QOAaYCdJ7zSzCyYkbhAEQZcjAzWzMpq+mcKgmY0rAMxsY54MrCllw0bcSeaNdpCZHUTm2nwdmeb57MRkDYIgCKaYTY0rNpIOIssJ35SyM4Gn5TF9ADCzGyQ928xuVyJu/LQiof6CSBYJ22MbS6xkJWz+ccyPk/HQE34Hbt60xFSz5VwDU0jKFyDJ0KDfZ0/xPbRe/ydXfcD3Exh1VkXridQPlVH/WT14y87FFfv6/V1y515uXXWzn4dAzphfuPsqt838Ht9P4JpFxbkaRhf6XwOP7jPk1i3qW1pYPjCYWIreuNmvc/IQ2JZi3wwAq/ufC6VyeEzBInYZP4Fp5IPAtyWNO6XsBvxJmYZllcDNkv4dODN//yfALZIGyLONBUEQzCnqJUxEp2nPwMx+K+lpwH5k1ps3mVmp7+ayy0FvJUvz+EHgQ8DtedkY8KKJiRsEQTALaJZachpnCfn6/1+Q5Xr5PbBC0qvLtC1rIrpF0heB88zs5m2qNxa1CYIgmO100HLQ18hSUx6Wv18NfBs4r1nDsklljgauJovvj6RnSTq3FUmDIAhmBWVmAtOnJPY2s8+SL8+b2RbKxLGm/HLQp4BDgEfzC1wNrJigkEEQBLMG1Usc0yfOqKQhngj3vzfgWwk0UHZjuGpmj3WMJVAQBEEn0DnOYp8iW6lZLukM4HCyfdumlFUC10n6n0CPpH2A95NlrekcKhU0r5RvxOMoEQo5ZSJa31Rs5maj/mZ8Ksy0h9UTE7XUYmQHhKBWj2+DaT3+vVh6ZfG4Ruf7ppSpKXfdyX/Xv8FvNLrAl29sXnHdxnuWsvHA4s+THvVlH3zEf8Zb9ij+PB04b7Xb5tXzbnPrfr7XPoXlax/009GOJQLG1BxT0AXznXjgQN9GP3R2/wMb3DptKP6bS/0Np0xLSVSVpjNiB42H+9+BLLXkoWQTkA+YWXGs720ouxz0PuAAsunFN4H1ZJZCQRCAqwCCyeMpgJmmzHLQdJDHC3qvmT1sZj80s/PKKgAobx20GTgpP4IgCOY8pZzFpm9j+EJJHwG+BWx6/PJmfgainKQS8GJUN1ygaazqIAiCWUvnmIi+nUyad29TXpxOroFmM4HxGNWvA3YFTs/fv5ksnlAQBMHcpMSSzzT6EexPpgD+iEwZ/BL4UpmGSSVgZhcDSPq0mb2goeoHkn7RmqwZkj5Nlgy5DjwEvNXM7svrTgTeQRal5/1mdv5krhUEQTDLOY1sr/Zf8/dvzsve1KxhWeugJZKeama3A0jaC1jSgqCNnGJmn8z7ez/wV8A7Je0PHEu2Eb07cJGkfc1s5iOmBUEQjNMBSWUa2M/Mntnw/meSrinTsKwS+BDwc0m35+9XACeUl297zGx9w9t5PHE7jwHONLMR4A5Jq8gc1X4zmesFQRBMJR0WRfQqSYea2aUAkp4HXFKmYVnroJ/k/gFPy4tuyr+kJ4Wkk4E/JctSNh6IbhlwacNpq/OytIz9vVSXbz856V23qeDs8cpEPOFEmGnPBl5DCdv4ROhn16Y+4XeQ9gUo7m+qw0+nfAE0UCqz3XbUHR+ClE/O0Dr/XowNO/0ljKN7t/h/2aoW9zd0qz/enoRNuhKPZGxd8Z/nf9zxR26bA5/m+xD88sCzC8uPqBzjtrnrLn/CX51XLF/fppTluf+VU1uxuLB8YI1/bysb/K8hjRSHpgayhZPJYmSL2c3OmR6eB/yppLvz93sCN0r6PVk++Gd4DZtZBz3HzK4k62WELJuYe05B3UVkG8rbcpKZnWNmJwEn5XsA7yXzeiv6Kyu8lZJOIJ+RDPb7TihBEARTTYfNBI5qtWGzmcDXJB1BOgTGV4BnF1WY2ZEl5fgG8EMyJbAaWN5QtwdwX1EjM1sJrARYOH9Z5zyOIAhmPx20J2Bmd7XatpkSWEQWnjSlBNa0cmFJ+5jZrfnbo4Gb8tfnAt+QdCrZxvA+wOWtXCMIgqBddFiO4ZZpZiK6oo3X/oyk/chW1e4C3plf83pJZwE3kCWBe09YBgVB0HFM4UxAUg/wO+BeMyuVDGaqKGsdNOWY2esTdScDJ0+jOEEQBBOizJ7ABMJGfgC4EVg4GZlaoWwAuSAIgqCRKUoqI2kP4FXAf7RJ0iShBIIgCFrBSkcRPU7S7xqObX2s/hn4GM0NTttCqeUgZdlk/hfwVDP7W0l7AruaWeds2FZErcBuuWeTP0TVEvc8ZQPvJdepJ/pLxDa30YQ9sydDvxMoHzDHx6HS35ofAyr+rZDyE6DFe+vOnxPz6i07T/y3TCqfQIqakxpg+H6/jer+tTbt7g9scE1x3Zrrfdv94ze9za1rZcT9C/zPZnVz8XPcsNx/HrUB/9lXRoslrPX5eUJkft3AI4m/Kz/tQnnK5xM43cw+V1SdJ4N/yMyuyC0xp52yfz1fJEtg/Ob8/Qbg39oiURAEQRcwvieQOkpwOHC0pDuBM4EXSzo93WRqKasEnmdm7yHPx2Nm6wD/p2gQBMFsZ9xjOHU068LsRDPbI7fEPBb4bzM7rk0SF1LWOmgsN2EaT2K8hBlavwqCIOgERHPrn47JQJyg7EzgX4GzgaV5vJ9fAX/fNqmCIAg6nSmyDnq8O7OfT7ePAJQPIHeGpCuAl5Apt9ea2Y1tlSwIgqCDmc48wu2kWQC5HRvePkSWZP7xujL5K4MgCGYl5a2DOppmM4EryIYhstCk6/LXi4G7gb3aKVwQBEGnIjoqimjLNIsdtBeApC8B55rZj/L3rwDKRgidFlSt0f/gxu3Ka/MH3TYJa/Wkzb8qzlZKIj9BKr6+qk7ugpTfQSpWukN9yxZfhqTtfvH2VmVoaMIyQJPcCs6QK2Ot/bX1bS5ul8onUEmkcehz2vWMJORLVOlev27jMid3wQP+dmNl9QK3rubY81Xn+TJo/+3/ph6v26k4ln9to/+52LyLf60xR/TBNf5nc94Dqc9Fmw0YOyiK6GQouzH83HEFAGBmPwZe2B6RgiAIuoAm3sKqd8dMoayJ6FpJnwBOJ9N9xwEPt02qIAiCDqfDksq0TNmZwJvJEsufDXwfWMoT3sNBEARzkykyD51JypqIPkIW6jQIgiCgpIloFyiCsgHkfkbBcMzsxVMuURAEQTfQRb/2U5TdE/hIw+tB4PVkWb+CIAjmJJmJaBMt0AVKouxy0BXbFF0i6eI2yBMEQdAdzKWZwDaewxXgIGDXtkjUIlapUFuwvU+AxhKLdgktbgNO4HjAep3bltpmH/L7q6x37Pf7Eo/nsQ1+ndOuUkmEs/JyJICfG2BxIhNeyo/h3ofcqsWOD8bozr4xe21w4vkEqsO+7XnvZt+Poc8xm6/O8/vr2+j3t2Vn/3MxtLa4POWToERaiJEdip9xymdi5C7/vleca/UlPpqpa6lWLF+vn4ojeS9G57c5Z1aJPYFuCCBXdjmo0XO4CtwBvKNdQgVBEHQ6pUxEu2CmUFYJ/KGZPUkfS/JdYIMgCOYCXfAl34yy86VfF5T9ZioFCYIg6CaaegvX6Qol0SyK6K7AMmBI0rN5YolrIeAn9wyCIJjllFkOmg17Ai8H3grsAZzaUL4B+MupEEDSR4BTgCVmtjYvO5Fsz6EGvN/Mzp+KawVBEEwZZknjkvykaRFlMjSLInoacJqk15vZd6f64pKWAy8lC0s9XrY/Wa7NA4DdgYsk7WtmCbuHIAiC6UU2BzyGJR1nZqcDKyR9eNt6Mzu1oNlE+DzwMeCchrJjgDPNbAS4Q9Iq4BCa7UEI6gVxflObHvUWQ83aQHGvRdd/XI7RRGjq4eI6jSb88eb7pns2WGx2mJya9vmmih7VXRa5db33JuILpkxV732wsHhgk3+t0eU7unXeL7VKNWEenJCv3ldc54VpBuhx2gAMP+T/tvGu1eoag2e6ObTGvxfVB/2Ljc0vrkuZqfZv8K/Vv9H/G6kNeOajfn8ji9q8GDMXMosB49808wvqJqXjJB0N3Gtm1+jJNurLgEsb3q/Oy4r6OAE4AWBgwP+SCIKge/EUQEfQ/atBTZeD/l/+8iIzu6SxTtLhzTqXdBHFTmUnke0pvKyoWZEojnwrgZUACxcs64LbHQTBbGG2hJIu6yfwf4HnlCh7EmZWmH1M0oFkqSnHZwF7AFdKOoTsl//yhtP3AO4rKWcQBMG0oLqheloLdIOSaLYncBjwfGDJNnsCC2mSnTGFmf2eLCfB+HXuBA42s7WSzgW+IelUso3hfYDLW71WEARBW5gjsYP6yfYDeoHGDKDrgTe0QyAzu17SWcANZCEq3hOWQUEQdBpzJdH8xcDFkv7TzO5qlxBmtmKb9ycDJ7frekEQBJOlzHJQN8wUyu4JbJZ0Cpnt/uOhOiOpTBAEc5Y5shw0zhnAt4BXA+8EjgfWtEuolpCwAjv9Wsp2f8RfZbKeVMxbr5HfpN6f6K+yfQhsAFV9+Spbxtw663X8GJbu4Pc34vdXd8Jqj+zkG8f3rkkYzo/5/g9WKx6znBDTAL0bRvxrOSGy64kQ4/WB1HZXcV3fZv/h1/p9E8eesURYaEfESs1v05sIW903v1j2WsKPYfARv7+ercV1o4v8r5XU8okc343+9f6zSoUET7WbEmZJ2IiyAeR2MrOvAGNmdrGZvR04tI1yBUEQdDZ1oGbpowtmCmVnAuM/E++X9Coyk8092iNSEARB5zPX/AT+TtIi4M/J/AMWAh9sl1BBEAQdT5kAck0DzM08pZaDzOw8M3vMzK4zsxeZ2UHA3m2WLQiCoGMZNxFNHU37kJZL+pmkGyVdL+kDbRd8GyaThHO7gHJBEARzhXET0dRRYk+gCvy5mf0h2T7re/JIytPGZJRAN2x8B0EQtAcj2xxOHc26MLvfzK7MX28AbsQJmNkuJqMEOn+xKwiCoE3IrMQBwHGSftdwnFDYn7QCeDZw2fSNonnsoA0Uf9kLGGqLRJNABfbT5tiJg2+XDGAtREaqpGzPU34CLejT2vwBt061Yjms1x/UyA5+f14uBEvNBR17f/B9AbJK515s9X0BKi1svtV2S4QeT3Q35tjap6gO+jeq2sJfUc9IIv6/k+si2V8i14X1+rLXnGsNrh1121SH/a+cunOtor/rcQYe9q+V/pubAuqWHUkM4HQz+1zqLEnzge8CHzSz9VMkYSmahY1YkKoPgiCYs0yRiaikPjIFcIaZfW/yPU6MsiaiQRAEwbY0NRFNVyuLpf8V4MYpyNTYEm2eLwVBEMxOVG9+lOBw4C3AiyVdnR+vbKvg2xAzgSAIglYosyfQ1JfMfsUMW1qGEgiCIGgBkVkANTun0wklEARB0AplwkZ0AaEEgiAIWkA1S5qvAl3hTTV7lIAZqhbsxDix9QFqQwmb5YSNsRdH3RLb7LVEf3VHxp6RlI9DYtfJ8Y2oJeLkb15anDMAYGB98Xjn37LObWOPPOrWtUTqF1fCh8B2KLZyTuWLSNnG924uvhepuPYpP4H+jVMb8z6V6crbqLSehC9Awi1Cjt9JypfCKoncCp6/whZfBs+3IKuchm/gSVoHdQKzRwkEQRBMJ6WWgzpfC4QSCIIgaIV6LAcFQRDMXWJjOAiCYA4zS5aDZsxjWNJfS7q3yEtO0omSVkm6WdLLZ0rGIAgCF+MJReAeMy1kc2Z6JvD5baPr5QkVjgUOAHYHLpK0r5klQk8GQRBMLyqxJ9ANOYhnWgkUcQxwppmNAHdIWgUcAvwm2cqKQzlr85jbpD7gDz9lnumZ1KVCU3tmpQAVr11qqpkIkV3ZtLW4ScJEtJL4MHvhidceurPbZuefFcsAoC1+HX2OqerQoNvE+vznWJtf3K53vS9DbV6/W+eZ8/avr7ptejclTH0Tj7g6XHytlJll38bE58x5xkqEQK8u8E2Hq4OeaXMipLrfHZXRYvmqQz0M3r+psM76/M+0UiHLp4JZsicw0wHk3ivpWklflbRDXrYMuKfhnNU4mXYknTCeqGFsrPhDEgRBd+MpgBlnPHZQ6uiC9aC2KgFJF0m6ruA4Bvh3smT1zwLuB/5pvFlBV4V30sxWmtnBZnZwX9+8dgwhCIKgGDOo19NH5+uA9i4HmdmRZc6T9GXgvPztamB5Q/UewH1TLFoQBMHkCOugySFpt4a3/wO4Ln99LnCspAFJewH7AJdPt3xBEARJrMRyUOfrgBndGP6spGeR3aY7gT8DMLPrJZ0F3ABUgfeEZVAQBB2HGdjUxn6aCWZMCZjZWxJ1JwMnT6M4QRAEE6NWz44UXWA91IkmokEQBF3A7DARnTVKQHWjsmV7nwCN+vbbKjj/cRLhda3fuW0J2/2eTX644/qwb5fuoTF/XB4VL1QvMPiw31/NsQcffjBx//r9MdmCYbdOm4vvU21H3/qrJ2Hzr3rxmK3Hty/vXe8/q6YBwwrb+PfdKv62XP+jxdeq9/lt+u5e69bVd1pYXD7oG+/3rxt16waqU7tKW/T3C1Af8uVLPY9kuPWpoMzGcBcoiVmjBIIgCKaVWh2aOqSFEgiCIJillJkJTI8kkyGUQBAEQSvMkrARoQSCIAhawGp1rJJeDrIuUBKhBIIgCFph3Fksec70iDIZQgkEQRC0wng+gaYndTahBIIgCFrB8iBxXc7sUQJmSZ+AIpTQ4slQ/s51NOavD5oThx6g57EtxW0Svgqt4NlhA/Sn7p3j/1Dv923tU3b9yec0PFDcJmHznbIj92S33oQfiCXyLow6zzhlk5549pWtvh2+9/x7qn5/9SWL/WttLPanSMXk71m7wa1z723C78D1sUn0p5FEjoSRhK9KC740E6JWx2hiIhp7AkEQBLOUUs5i0yPKZAglEARB0AplNoa7QAuEEgiCIGgBq9VpGuC483VAKIEgCILWqJcIJd35WiCUQBAEQQtY3TClv+S7wVlsphPNB0EQdCNXrLX7spmAc4zVtzLCFoCHZ1rYFKEEgiAIJs5/reE+xsw38b2bW1nO3phZwo515plVy0GFdtWJJbuUn0AqN4Ace2t6fJ2qROx1GyqOvZ+Mh57KaOTJUfHbaKMfQ98zg5MjdyaDb3uulG23Z22Rihs/krC1H3DubcqGPPEcbaDYBt7LgwBQnzfo1mmTnwuBhL2925/nxwBQcfwOHliX6DDhTzE8VNzk0Y1+d/P9XBKev0LSWyb1HKvt8xMws9H9dRB3cyt7c8D2Ytkoa7iPjTxW7PjSQcRMIAiCoAVu5MoBbzbQMAvwf6F0CKEEgiAIWsDMRpezN3dz65PKx2cBN3Jlx88CIJRAEARByxTNBrppFgChBIIgCFpm29lAt80CYIaVgKT3SbpZ0vWSPttQfqKkVXndy2dSxiAIghSNs4FumwXADFoHSXoRcAzwDDMbkbQ0L98fOBY4ANgduEjSvtbUPzsIgmD6GbcUup0bWMearrAIamQmZwLvAj5jZiMAZvZQXn4McKaZjZjZHcAq4JAZkjEIgqAp47OBbpsFwMz6CewL/LGkk4GtwEfM7LfAMuDShvNW52XbIekE4IT87cbzr/v7m9sobyM7A2un6VrTyWwc12wcE8zOcU3nmJ4ylZ2Z2aikBTdyZXFykA6mrUpA0kXArgVVJ+XX3gE4FHgucJakp1LsG1LoKWRmK4GVUyNteST9zswOnu7rtpvZOK7ZOCaYnePq9jGZme8l18G0VQmY2ZFenaR3Ad+zLMLS5ZLqZL8EVgPLG07dA7ivnXIGQRDMVWZyT+D7wIsBJO0L9JNNBc8FjpU0IGkvYB/g8pkSMgiCYDYzk3sCXwW+Kuk6YBQ4Pp8VXC/pLOAGoAq8pwMtg6Z9CWqamI3jmo1jgtk5rtk4po5H3RDvOgiCIGgP4TEcBEEwhwklEARBMIcJJbANkpZL+pmkG/NwFh9oqOvaMBfeuCQ9S9Klkq6W9DtJhzS06ehxSRqUdLmka/Ix/U1evqOkCyXdmv+/Q0Objh4TJMd1iqSbJF0r6WxJixvadPS4vDE11H9EkknauaGso8c0azCzOBoOYDfgOfnrBcAtwP7Ai4CLgIG8bmn+//7ANcAAsBdwG9Az0+OYwLguAF6Rl78S+Hm3jIvMp2R+/roPuIzM7+SzwMfz8o8D/9gtY2oyrpcBvXn5P3bTuLwx5e+XA+cDdwE7d8uYZssRM4FtMLP7zezK/PUG4EYyj+WuDnORGJcBC/PTFvGET0bHj8syxh10+vLDyGQ/LS8/DXht/rrjxwT+uMzsAjMbT5d1KZkPDXTBuBLPCuDzwMd4slNox49pthBKIIGkFcCzyX61jIe5uEzSxZKem5+2DLinoZkb5qJT2GZcHwROkXQP8DngxPy0rhiXpB5JVwMPARea2WXALmZ2P2TKD1ian94VYwJ3XI28Hfhx/rorxlU0JklHA/ea2TXbnN4VY5oNhBJwkDQf+C7wQTNbz5PDXHyULMyFmECYi06gYFzvAj5kZsuBDwFfGT+1oHnHjcvMamb2LLJfxYdIenri9K4YE6THJekkMh+aM8aLirpou5ATpGBMzyALIfNXBad3xZhmA6EECpDUR/ZFeYaZfS8vXk0e5sLMLidLYd9VYS6ccR0PjL/+Nk9MubtmXABm9ijwc+Ao4EFJuwHk/48v3XXVmGC7cSHpeODVwP8ys/Evxa4aV8OYjiFb779G0p1kcl8paVe6bEzdTCiBbch/3X8FuNHMTm2o+j5dHOYiMa77gBfmr18MjydM7fhxSVoybiEjaQg4EriJTPbj89OOB87JX3f8mMAfl6SjgL8AjjazzQ1NOn5czpiuMrOlZrbCzFaQffE/x8weoAvGNFuYybARncrhwFuA3+frlwB/SXeHuQB/XP8H+BdJvWQhvU8AMLNuGNduwGmSesh+0JxlZudJ+g3Zct07gLuBN0LXjAn8ca0is5a5MNPpXGpm7+yScRWOyTu5S8Y0K4iwEUEQBHOYWA4KgiCYw4QSCIIgmMOEEgiCIJjDhBIIgiCYw4QSCIIgmMOEEgiCIJjDhBKYA0ja2PysSfX/I0mL8+PdLbQ/QpJrM+6c/5ikHzn1/ynpDROVoxvJ78XzG95/SNLdkr4wk3IF3UMogWDSmNkr81AAi4EJK4EW+aWZvbKdF8gd6DqdI4DHlYCZfZ7iWDxBUEgogTmKnkgmM56gZIe8/OeS/jFPAHKLpD/Oy4clnZWf/608murBed2deTKQzwB7K0tQc8q2v/AlfUHSW/PXRylLkPIr4HUN58yT9FVJv5V0laRjSoxFed83SPohT0QNRdJByqK+XiHp/IaYQs/Nx/KbXNbr8vK3Svq2pB8AF3jyKIuIeUpefq2kP8vLd5P0i/weXDd+/xy5X5Zf/8r8mvPz8r/K+71O0krl7sGS3p+P8VpJZyqLBvtO4EP59dxrBYHLTCc0iKP9B7CxoOxa4IX5678F/jl//XPgn/LXrwQuyl9/BPh/+eunk7nyH5y/v5MsmN4K4LqGaxwBnNfw/gvAW4FBsjDB+5BFizxr/Dzg74Hj8teLyZLfzNtG9m37fR1wIdAD7A48CryBLGb9r4El+Xl/Anw1f30d8Pz89WfG5c7lWw3smJKHLLzGJ/LyAeB3ZMHQ/hw4KS/vARY4z2Rn4BfjYyOLCfRX+esdG877OvCa/PV9PJHUaHH+/18DH9mm77cCX5jpz10c3XF0w3Q3mGIkLSL7Erk4LzqNLILoOONRRa8g+2IH+CPgXwDM7DpJ105ChKcBd5jZrbk8p5PHLCLLnnW0pI/k7weBPcmS4Hi8APimZbFl7pP033n5fmQKazzWTg9wv7JAZgvM7Nf5ed8gi8w5zoVm9kgTeV4GPKNh72ERmVL7LVmMqT7g+2Z2tSPzoWTZsy7JZesHfpPXvUjSx4BhYEfgeuAHZIr7DEnfJwtoGASTJpRAUMRI/n+NJz4jRfHdm1HlyUuOgw2vvaBVAl5vZjdP8FpF/Qm43swOe1JhQ85hh03N5MmXaN5nZudvd1HpBcCrgK9LOsXM/suR7UIze/M2bQeBL5LNsu6R9Nc8cd9eRabwjgY+KemAJuMIgqbEnsAcxMweA9Y1rCG/Bbg40QTgV8CbACTtDxxYcM4GsvzF49wF7K8sHPAi4CV5+U3AXpL2zt83fhGeD7yvYR382SWG9AuysMM9+Zr/i/Lym4Elkg7L++qTdICZrQM2SDo0P+/YRN+ePOcD78p/8SNp33z/4CnAQ2b2ZbLQ3c9x+r0UOFzSH+Tth5WFKB//wl+b7xG8Ia+vAMvN7GdkqRgXA/PZ/p4HwYSImcDcYFjS6ob3p5LF2f+SpGHgduBtTfr4Ilko4GuBq8iWJh5rPMHMHpZ0Sb7J+mMz+6iycMDXkuUpuCo/b6ukE4AfSlpLpmDGM2d9Gvhn4Nr8i/dOnrxUU8TZZLkQfk+2Zn9xfp3RfLnmX3Ml1Jv3fT3wDuDLkjaR7YM8tn23SXn+g2yp7Mq8fA1ZLuMjgI9KGgM2An9a1KmZrVG2Sf5NSQN58SfM7BZJX87HcifZ8hJkS1mn5+MQ8HkzezTfwP5OvmH9PjP7ZZN7FQRPIkJJB6VQFge+L/8C3xv4KbCvmY3OgCxHkG2GNlMOqT7mW574XNLHgd3M7ANTI+HMkiuXg83svTMtS9D5xEwgKMsw8LN8+UPAu2ZCAeSMAk+X9CNr3VfgVZJOJPsbuIvMoqbrkfQhMrPR7860LEF3EDOBIGgzki4jMyNt5C1m9vuZkCcIGgklEARBMIcJ66AgCII5TCiBIAiCOUwogSAIgjlMKIEgCII5zP8HyKwngUVusG0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data_jan_nino_mean.plot(robust=True)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAELCAYAAAA4HCbKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAA2xElEQVR4nO2deZwlVXn3v7/bPd09+wIDDDOjAwhEcAVElMS4i0ogr5KICUajb4j7FkzkJcYkhsSowSWGJGNcAy64griwJIKKArLLKiPrsAiz773d5/2jqpnLTD3n1ty+t7tu9/P9fOpz7z2nTtVzannq3FO/8xyZGUEQBMHUpjbZBgRBEASdJ5x9EATBNCCcfRAEwTQgnH0QBME0IJx9EATBNCCcfRAEwTRg0p29pM9JekTSzQ1piyRdIunO/HPhZNoYBEHQ7Uy6swe+ABy3S9r7gf8xs4OB/8l/B0EQBC2iKgyqkrQCuNDMnpL/vgN4vpk9JGkJcJmZHTqZNgZBEHQzvZNtgMO+ZvYQQO7w9ylaSdKpwKkA6u07cmDh7qv17kg8zBIPOo0mytXrxemjTnqqDOA9cNXf55fp8f+UDc0vzuvZ4RahlqqvV2Zw1M+U/LzBocRWHTv6+90SozN73LyRhcXHvbaptT+1Pc71VBsa8QvVE8e2ljhOXrnUsU1tz7veU/al8LbXagMycU27JgwNt7SrzaxfY2aLWyrs8PY3LbBTTprHMS+/L3ESJo+qOvtSmNlKYCXArH2W26EnvXe3dRbeOeiWTzmr3o2+Z9Q2Z5ubNrtl6lu3uXneBduz4olumZGFs928e19ZnLfwDv8mHFifcNwOM+/a4Gf2Jm7cu1e7WTZabIee5B+LjYcvcPPWn7S1MH3gf+e6ZZR4Zi9YVfygGrhrjV8o5ZD6Zvh53kNxRqJMfyJvxDnHqYdvopHCcHG9bDjx4Eug+c45STw8Ru7zryX1+I2AS0a+dm9pw0pwxYXL7aprd7Dq7mF++PJ2brl9VKHPvojf5N035J+PTLI9QRAELh86ax0r/2VfZs+qccWFyye/b7yAqjr7C4DX599fD5w/ibYEQRC4XHHhcps1Uzz98H4+8N5FfOisdZNtUiGT7uwlfQX4OXCopNWS3gR8GHiJpDuBl+S/gyAIKseHzlrHB967FwBPO6y/sq37Se+zN7PXOlkvmlBDgiAI9pDGVv0YH3jvIt7/D2v44fGTaFgBk96yD4Ig6FYaW/VjPO2wfmbNVOVa9+HsgyAIWqCoVT/GB967V+X67ie9G6ddLFi8hePf8uPd0u/bvsgtc+vafd28Nav2cvP61xQ/I2dsWeKW6U1o3D3tdq+vGmXLEl/K27++OH14ll9mxp886uYtnb2pMH3d+5a7ZXof3uDmscQ/7nIkqqMzfUnh4Fy/zfLkfX9TmH7Qn93ilvnIvte7eQdc+GeF6fNv3d8to4SqdXCBn9frqHXNVxRSTygvvXIz/VPPrN/4xvdtLs6rDftyzdT4Fespvj537OWPN+k/yL+WZlzxSzeP1tShj+NDZ63jn87YuzDv6YfvbN0fe/z9ldDdR8s+CIJgD5H0HK9VP0bVWvfh7IMgCPacP3rrny5IrvD0w/vZvt2QVNz8n2DC2QdBEOw5vXNmN3efs2cLKtJdXgkjgiAIuo0RG2XY0p3/5sV6mgTC2QdBELRAHaPexJlXx9WHsw+CIGgJo06dRKC4fK2qMGWc/fq1c/jOF55XmDfoqC+H9vejEQ4sLY6WCLD3k7cUpi/s3+6WGar7erl122YVpo8Ce88utmPmiH/q7knIAPvXFvczbv+xLxtdN+LkPQ/2u6pYH1qbX1wngAdfsMDNqyX+Fc96pPjGmneffx5v/d8nFafzJA55/l3FhXw1H3cf/5nijOPhZbe/sjDrd/b+tbu9/fscnSxw/Ozicvv0zPENbJHt5pzHxGu9T6x/sps3q1YcSfNn64vPB8AND3nX7TCDa2cW5sy7zVfDzJ/7DDeP87/s55VkxIxhSzv7VqNHd4Ip4+w9PEffDXiOvlU8R98qnqPvBJ6jbxXX0beI5+i7Ac/Rt4rn6FvFc/STTR1jtGk3TnW8/ZR39kEQBJ2gTJ99lQhnHwRB0AJ1M0abzMpVpUdBOPsgCIIWGMEYDjVOEATB1GbUsiVFOPsgCIIux6CLhJfh7IMgCFpiBDFs6YCW4ew7QN+6IZadd8/uGb2JeLDypYg2Z8DNG1kwvzB98+wW4x0tKT4N6wf9MMs9CXXb4tnFF+CGQ/wycx/w8+SIhTce6Guc1x/mh6V963E/dPMeHlpQmH7J549xy9SG/Fuqxxn6cPO9/liEt856tpv3psU/KUw/fcX33TL/+dAL3LzvrH+am/ftOc8sTP+LJ1zkljmwtzgcNcDinuJzcuOQf488OjrPzds2Wnz+r15/gL+97bPdvMGHivNm35+QDCe86cjMzob+GkWMEs4+CIJgSlMPZx8EQTD1qZuoN+vGaZI/kYSzD4IgaIERagyR6CYGrEnLfyIJZx8EQdACpVr2E2RLGSo7eYmk4yTdIWmVpPdPtj1BEASNjPXZp5YqOftKtuwl9QD/BrwEWA38QtIFZnbr5FoWBEGQMWI9DFvahVapG6eqLfujgVVmdpeZDQFfBU6cZJuCIAgeow4lWvbNnb2k90i6RdLNkr4iydd9j4NKtuyBpcD9Db9XA774GWB0hPq6gtjgqYDSqVjUvf6h8V7JpF7VqM/Xnc/c19HnbyqOmw9gg35YWnticfz5TU9c4JbZdKCbxciy4n0tX7LOLfPhAy908140c9TN+/qW4jEMF7/oULfMpkS/6Zy+4lj3T1+wxi3zk9UHuXnPmVccY/51c/3t3b/3TW7ev218vpv3q58V69X/7w2numXqvYnr3cnre9S/1mds9jfX5+TNXe1PSjBju3/PHbLBCend45/fno3+HBLW11n3NkqNUUu3l5vESUPSUuCdwGFmtl3SecDJwBfaY+VOqursi87ubodN0qnAqQAD8gdrBEEQtJsRagw3UePUy3Xj9AIzJQ0Ds4AHx2/d7lS1G2c1sLzh9zIKDoCZrTSzo8zsqD75ozmDIAjaTd2yln1qKW637sTMHgA+BtwHPARsNLOLO2FvVZ39L4CDJR0gqY/sb80Fk2xTEATBY9SpNV3y7ohTJF3TsDzWDydpIdn7yAOA/YHZkk7phL2V7MYxsxFJbwcuIusK/5yZ3TLJZgVBEDxG3WC0qc5eAOeY2cecVV4M3G1mjwJI+hbwXOCcNpoKVNTZA5jZ9wE/ulQQBMEkUkp62Txcwn3AMZJmAduBFwHXtMXAXaissw+CIKgydWqMNukJbzaoysyukvQN4DpgBLgeWNkeCx9POPsgCIIWGDWV7cZJr2P2QeCDbTLLZco4ezOw4d31vTbqa7qTOvuCbY2hWvEJVE9ChlVLxM7/TbFGW7Nn+dtLUPtNwXgDYMW3/DqtPcqPnb/3cx8uTP/eIT/YM8NK8K1HjyxMf+ehP3LLvGJ2sfYd4PMbjihM3zbqj3sY2L9Ymw9wcF/xsWj1Vhoa9a+ZAUe6P/th34HMXu2Pv9i+T7FibfZqR98OqO7fI7WtxfvS9sRkC6n7cdTZV6rMSOI+VWdHr47QvBunpPRyQpgyzj4IgmAiMVQpZ96McPZBEAQtkHXjNOuzr87DIJx9EARBC2RqnCYjaCsU9jKcfRAEQQtkIY6bjUuNln0QBEFXU7ca9ejGCYIgmNrEhONBEATTgBGrNe2zj5Z9JzAr1tSntPTJ7fnlzJH9WuJtjFJaYRX/FdRQQq+cwhkjYGuL9fcAs5cVx5EH+PWPVxSmv2nmsW6Zs5dd5uZdvN3f12lLf1iYvmF0pltmr5o/18Ppe/3KzfO4ctDXbs9WsQb/7A0r3DJfuucYN2/DA/PcvPmO3L9Jz4HL3LuKA9DXHlrrlknNm+Dp4uvD/jgFG/LzvHsuOVbGuXdS22sXRolunAo17aeOsw+CIJhAppT0UtKrSmxjRx60LAiCYNpQRnrZNc4e+AxwPmn90POI6JRBEEwzzKDeNDZOdWjm7H9gZm9MrSCp7XGXgyAIqs5oqaiXXdKyN7OmM6aUWScIgmCqYaamLfsqNe1Lv6CV9FxgRWMZM/tSB2wKgiCoPCM0l15WKVBaKWcv6b+Bg4AbgDEdlAHVcvYdllqNZ/+eXBMAOY//wRbr01ccvrc2Z7ZbZMZGX+b5nJfeUZjeX/MlihduW+Tm7dez0c070rF952VXxJ6LyrbUd7h5x/T7Uk5vX59bu69bouadX2DWPb7tM9cUn//eHQmJb0L+W9tcXOekvDIR6tu88MIthhV3pcuqTf69XUC9TMu+QpS9S44CDjOrkmo0CIJpQQUdPYx14zTT2VfnYVDW2d8M7Ac81EFbgiAIuoZsBO34piWcSJrp7L9LZu9c4FZJVwOP/eczsxM6a14QBEE1qZcZQdtFffYfmxArgiAIugyj+QvYKrXsk48lM7vczC4HXjH2vTFtPDuW9AeSbpFUl3TULnmnS1ol6Q5JLxvPfoIgCDrBSL2H4SZLlfrsy4ZUeklB2svHue+bgVcBP25MlHQYcDJwOHAccLaktL4pCIJgghlT46SWKrXsm/XZvwV4K3CQpJsasuYCV4xnx2Z2W76PXbNOBL5qZoPA3ZJWAUcDPx/P/oIgCNpJnTI6+uq07Jv12X8Z+AHwT8D7G9I3m9m6Dtm0FLiy4ffqPK06eGFV2xxOOanNT21uR7FuWv39bpn6gP/n6dZ/P7ww/b/+7uNumX995EVu3l/td7Gbd8WOWYXpxw74f0IfHt3i5u3XM6cwfU4iLHJKg7/RikP0Lh/wb4eH5/khnW8Z2cfN84YxzPyNr4vvcbT0gK+Zb0VLD5gXSrtFnX1LTKIss8wI2q5p2ZvZRkmbgaea2b17unFJl5JJNnflDDM73ytWZIqz/VOBUwEGKHYSQRAEnWDUaozUm0S9rFCffVOdvZnVJd0o6Qlmdt+ebNzMXtyCTauB5Q2/lwEPOttfCawEmKdFVXqIBkEwxamjrlLjlB1UtQS4JdfZbx1L7JDO/gLgy5LOAvYHDgau7sB+giAIWqZUILQKUdbZ/127dyzp/wD/CiwGvifpBjN7mZndIuk84FZgBHibWau910EQBJ1hpF5jpD7FwiWY2eWS9gWelSddbWaPjGfHZvZt4NtO3pnAmePZfhAEQScxumvyklI6e0l/SNaV8gfAHwJXSTqpk4YFQRBUmbE++9TSTdLLMc4AnjXWmpe0GLgU+EanDAuCIKgyU0p62UBtl26btZQffVtdPL08tKbfTW0vxQRpj23Ij1nfd/96N2/vVcXl/njxe90y+u0Nbt6V85/g5h03+/7C9NuL5e0ADCTixbfCYCJ2/mfXH12YfscWP579qg17uXnJuS+cau1Y7I+XmDnk296ztngegZQu3tPSZ5ltvm7bPX6lw4xOxT574IeSLgK+kv9+DTHJeBAE05g63dVnX/YF7fskvRo4lqwTamX+gjUIgmBaYqbmLfcKefvS87mZ2TeBb3bQliAIgq5h1GqMdFE8+7JqnFdJulPSRkmbJG2WtKnTxgVBEFSVsZZ9cimxHUkLJH1D0u2SbpP0nE7YW7Zl/xHg98YiVQZBEEx3zJr32Zfkk8APzewkSX3QmUBfZZ39b8LRB0EQ7GTUaoyOU40jaR7wPOAN2fo2BPiyuXFQ1tlfI+lrwHd4/By03+qEUUEQBFXHLFtKcIqkkxt+r8yDOAIcCDwKfF7S04FrgXeZ2dZdNzJeyjr7ecA24KUNaQZUy9m3qnPv9LagElrh+rZtbl5tg/8KZnTDhsL0ZRfNdcvs+KWf98GX/aGb9/FDiuPCv/qJN7hlrtvo6/YX92928zz+eC9/npzXzv9FYfo3dIRbZt2g/6/8jhUL3byBNcUi/N4dvofpmz3DzetxYtOrlrjWa37L1JxWrWr+te6VSZK4F5WwL3kPJ8ZtlMXKR708x8y8+bx7gSOAd5jZVZI+STZ3yAfGb+HuO2qKmf1pKl/S6Wb2T+0xKQiCoPpkLftxSy9XA6vN7Kr89zd4/ERRbaNdzdc/aNN2giAIuoK6idF6emkmvTSzh4H7JR2aJ72ILOJv2ymts29CdcSkQRAEE0CpQVXleAdwbq7EuQtI9qS0SrucfYXGiQVBEHSeMs6+zAtcM7sBOKotRiWIln0QBEEL1POumhRVGkHbLmf/9TZtJwiCoCsw2vKCdsIo5ewlfQT4B2A78EPg6cC7zewcADP7x45ZWBJJ1GbsXp1U+NYUVm/zWWp3OOU2U9/sSxTVXxxS1359H7W9FxXm9f/an5v+wK2HuHkPHVscDvi/1h/rlpk1Z9DNu2HH0sL0P3/qT90yC3p2uHmXbTu4MP15s293yyzrK5aTAny/z9/XjQ8fWpg+9163CDv28qWXM/Yqlnkq0deQvH/qTvjjpFQyJcvc83suWcbaoK9M7bt9ffYTQlk1zkvNbBNwPJlU6BDgfR2zKugKPEcfBNMBK7FUibLdOGPNhVcAXzGzdVL3PNGCIAjaTl1Ysz77Cnn8ss7+u5JuJ+vGeWs+LaH//zMIgmCKY5TpxqlOo7hUN46ZvR94DnCUmQ2ThU44sZOGBUEQVJmx2DippUqUjWc/C3gb8O950v6MUxcq6aN5/OabJH1b0oKGvNMlrZJ0h6SXjWc/QRAEncDqwuq19FIhh1/2Be3nycJuPjf/vZpMnTMeLgGeYmZPA34FnA4g6TDgZOBw4DjgbEmpaZmDIAgmnqnYsgcOMrOPkMeKM7PtjLMzyswuNrMx7daVwLL8+4nAV81s0MzuBlYBR49nX0EQBB2hi+Q4ZV/QDkmaSW6+pINoiGvfBt4IfC3/vpTM+Y+xOk9LU6uhWQWhZIcS8wA4IV8B1Lvnuvj6sL+9JJ4uOaW/b7Nuv546Tk6ethTr7wFqs/2wvrU7H3Tzep/xpMJ0G/XbFtvvmufva2lxWOev3/tMt8wD+y1w89YNzS5MP2zfB9wy+/eud/P26t/i5g3NK/YWG5/kH4sZm/w/wbXRYp39rAHfDdQe2eDm2ZbikOu2I+Eaav6+3FoltP6pcQDJcMptcMRWQo1DhXT4ZZ39B8kGUy2XdC5wLPnMKikkXQrsV5B1hpmdn69zBjACnDtWrGD9wlMj6VTgVICB2pxm5gRBELSNbhtUVTae/SWSrgOOIXPG7zKzNSXKvTiVL+n1ZAO1XmT2WA/XamB5w2rLgMKmYD7by0qA+b2LK/anKQiCKU0Fu2pSlFXjCHg5cKSZXQjMkjSufnRJxwF/BZxgZo3/tS8ATpbUL+kA4GDg6vHsKwiCoP2oxNKBvUr7STpB0u9JKuo5KaTsC9qzyXT2r81/bwb+bQ9t3JVPA3OBSyTdIOk/AMzsFuA8sgD+PwTeZmatBbgJgiDoFAbUmyztDrEl/V+yxu+rgJOAKyW9sUzZsn32zzazIyRdD2Bm6/NA+y1jZsVv4rK8M4Ezx7P9IAiCjmIq8QK27a379wHPNLO1AJL2An4GfK5ZwbLOfjjXuo+pcRaTPbeCIAimJWW09B3Q2q8m61kZYzNwf5mCZZ39p4BvA/tIOpPs78Nf74mFQRAEUwoDmkkv288DwFWSzs8tOBG4WtJ7AczsLK9gU2cvqQbcDfwl2WS4An7fzG5rg+Hto1ZDcwo00NsSJ2PUj/1NKqqno8+vJbTvST2wl1fxGPi2dbubNzrox8nrPdTtwWPjU4uP7YyZ/hiG2mZf7z80XKw737R9wC1zz9bimPoA+w4Ux/2/Z3hvt8zm+kw378qHV7h5vVuLr8Ghhf65H9zXv87kXe/my5YHBvx7pGdTcbnauk1umZRmntHielliDEjLsfiLh1/sEbJsabZOm/l1voxxfv45t1nBps7ezOqS/sXMngP4MzQEQRBMJyZBemlmf9dq2bLdOBdLejXwrQY9fBAEwfTFNGHdOJI+YWbvlvRdCh4xZnZCs22UdfbvBWYDI5J2kHXlmJn549SDIAimMmVa9u1rGv93/vmxVjdQdgRt0/6gIAiCacUEduOY2bX512uA7WbZS7tcJem/tGqg7ITjRxQkbwTubYhcGQRBMH0opbNvO/8DvBgYi6A3E7iYneHnXcp245wNHAH8Mv/9VOBGYC9Jbzazi/fI3CAIgi5HBmomimt/y3/AzB4LlWpmW/LJpZpSNlzCPWSjto40syOBZwA3kz1hPrJntgZBEAQtsrWxp0XSkWRzgzelbMv+t/KYNQCY2a2SnmlmdymlR59Ienuwhbu/WlCvX0Xb5OuBk+VqxXVu9Uiop1gLnowxXwENftK+VLlZfqSNBfsXn5O9ZhXHTge4e77fsLGR4uM06qQDrFrra+ZxJPgb5/g2fOqWF7h5ww8mGmULis/j3OX+dbvP3OJxAAD3zVtUmL5mZnGMfoA59/vx8ec8UKzB70/5hJp/3LXdmTdhuz9mI6nbH0zE1Z8gnX0HeDfwdUljkYCXAK8pU7Css79D0r8DX81/vwb4laR+8tmrgiAIphX1EtLLNvfpm9kvJP0WcChZ+/J2Myvlg8t247yBbHrAdwPvAe7K04YBv9kSBEEwVWk2JWEHWv15//xfkc0p8ktghaTjy5QtK73cLuls4EIzu2OXbH9etSAIginMJHTjfB64lizkPGSB0b4OXNisYNnJS04AbiCLL4+kZ0i6oBVLgyAIpgRlWvbtfxgcZGYfIe8+N7PtlHxdWLYb54PA0cCGfAc3ACv20MggCIIpg+ollvbvdkjSTHaGmz8ISLyJ3knZF7QjZraxMsqbIAiCKjDxg6o+SNbDslzSucCxZO9Pm1LW2d8s6Y+AHkkHA+8kmx2lWhQ9jAZ8mZ9q8/1tpeReQy0IkBy5ZgpPktmMliZxbEWuafW0BNShttk/trULi6fUvPfAhb4ZM/3/yrWNxZf46Gb/0t++l99QunnHkuL0B5aw36JiSeTI/b60sX+jf130PGNjYfqrD7zBLbNxxA+nvGOkWCr5wAH+PVLv9UMcjzgS2oG9/HPVv94fcN+7zRv1P5eezY4sc8jfnjb7cl3W+lmlmdjYOGPh5heSTUl4DNkfh3eZ2Zoy5cveqe8ADif7u/AVYBOZMieYzrTg6KcqnqMPxo/n6CebMt047SSPh/N2M1trZt8zswvLOnoor8bZBpyRL0EQBNOeUoOqSrbs84Bm1wAPmFlKSnmJpNOArwGP/XUxs3XN9pF09l7s5IYdNI2hHARBMGVpXzfNu4DbgGZh49+Y7/Wtu6Qf2GwHzVr2Y7GTXwXsB5yT/34tWbycIAiC6UmJrpoyOnxJy4BXAmeSzR2S4jAyR//bZE7/J8B/NN9Lkz57M7vczC4nC4L2GjP7br78Ub6zlpH0IUk3SbpB0sWS9m/IO13SKkl3SHrZePYTBEEwyZwi6ZqG5dRd8j9BNsd3mV7+LwJPBj4F/Gv+/YtljCirxlks6UAzuwtA0gHA4pJlPT5qZh/It/dO4G+AN0s6DDiZ7IXw/sClkg4xa0ljEgRB0BnKD5o6x8wKZ5jKQx08YmbXSnp+iW0damZPb/j9I0k3ljGirLN/D3CZpLvy3yuAXZ9Oe4SZNcoXZrPzsJ0IfNXMBoG7Ja0iG9D18/HsLwiCoJ20KerlscAJkl4BDADzJJ1jZqc4618v6RgzuxJA0rOBK8rsqKwa54e5vv638qTbc2c8LiSdCfwJ2axXYwHVlgJXNqy2Ok9L21gTowW635564p+REhr8un8W5Wwzdd6TKntnsFoyzHILWn9LhYNtIWRyahyAevxjS4+/r5GB4vTRhJZ+xiZ/ezXnMFmquht9rbp3Ih+52w9V3JcYsmGJoRQDfcXG/2LdE90yz1p0r5v3wv1+VZh+3uZnumWGZvjXzPC8Yl388AP+wR3t83X7/ZuKD0bvTP8+0Ih/XfTOTczWd7+fVRqjecdLk4eBmZ0OnA6Qt+xPSzh6gGcDfyLpvvz3E4DbJP0y25w9zSvYTI1zhJldlxs1SDY7lbtOQd6lZC92d+UMMzvfzM4AzpB0OvB2stFhRbdT4SHL+75OBRjoSwyQCoIgaDOTFM/+uFYLNmvZfz5/2qQapp8FCpsGZvbiknZ8GfgembNfDSxvyFsGPFhUyMxWAisB5s1ZOvGHPQiC6UubA52Z2WXAZU3W8f+6NaGZs59PFk4z5ewfbWXHkg42szvznycAt+ffLwC+LOksshe0BwNXt7KPIAiCTjFJc9C2TNLZm9mKDu77w5IOJev1uhd4c77PWySdB9wKjABvCyVOEASVo0MTlHSKsmqctmNmr07knUk2wCAIgqCSlOmzr1Kc4Elz9kEQBF3NBEe9HC/h7IMgCFqhTJ99hSjl7JXNWvLHwIFm9veSngDsZ2bVeXFaE/WB3XW6NsPXP2vEP1NKaHR7NhZrhTWY0L4P+sMSbNv24ozEGIHaAj9ekm3dVpw+5IeKrQ8n4oI7Mc2V0ExjfpNmdK6vY/d057VB/w9xPaFVl/O2Z0YiIvGM4sMHwOACJyPRgutJjEjZuswvuOG2vQrT1y/x4+M/sNmXIB+woDgw4sLZzvUHPLzVHy9hi4qv9x1DiTEWiQmQhucUn8iB9YnOkMRx79vS2nwQpemyln3ZgORnk01w+9r892bg3zpiURAEQRcw1mefWqpE2W6cZ5vZEZKuBzCz9VJi+GkQBMFUp8wI2gpR1tkP58H1xya5XUxXVTMIgqC9iOZqmyqpccp243wK+DawTx7P5qfAP3bMqiAIgqpjJZeKUDYQ2rmSrgVeRPaw+n0zu62jlgVBEFSYTswz20maBUJb1PDzEbLJxh/LKzPvYRAEwZSky9Q4zVr215KZK7JQmuvz7wuA+4ADOmlcEARBVRHVU9ykaBYb5wAASf8BXGBm389/vxwoG9FywrCe3V+HjPb5ryV6fXkxowOJWPK9xfrd2lZfx64RX7evWY7ufEdCoD3sa/o12x9b4FFLxbN34s/X5vh675TO3hLjEWY9UlyuNuK/6tqxyM2i19HM1/xhBYwkwtnP2OqUceLwQ/o6G1jr12twYfGx6LnXN3D7sJ93/aIFhem1VOSpvoQ3m118EK3mlxma59d325LicjvW+dfmQKJvoT6jw69HK9Yn34yyL2ifNeboAczsB8DvdsakIAiCLqC+s9/eXSr0MCgrvVwj6a+Bc8ieZacAaztmVRAEQcWp4sCpFGVb9q8lm2D828B3gH3YOZo2CIJgetIlsksoL71cB7yrw7YEQRB0DaWklxVy+GUDof2IArPN7IVttygIgqAbqGDrPUXZPvvTGr4PAK8mm0UqCIJgWpJJL5t4+wo9DMp241y7S9IVki7vgD1BEATdwVRs2e8ykrYGHAns1xGLWsQE9QKdvc3w30HbDl9gbL2+Rnf7/GLN/Iwt/uHs3eJry2t9Trl5vma6tikh3nZaG6ol3sdv3+FmeXHr60sXu2VqmxPbW7PBzVt4Q7Htg0vmumW2LPXj6g8uKD6PKe17PRGmf8aWYvssEac9pdgY8quFRou3ObDGL+ONAwCoDReffyX+o/f6p5GhecXjTbw5CQDqCY/jzT1QS0wT0bPDP7iD8zussy/RZ1+lQGhlu3EaR9KOAHcDb+qUUUEQBFWnlPSyQi3/ss7+yWb2uGe8JH9IaBAEwXSgQs68GWV19j8rSPt5Ow0JgiDoJpqOnq1TqYdBs6iX+wFLgZmSnsnOLqh5wJ4HYAmCIJgilOnG6aY++5cBbwCWAWc1pG8G/l87DJB0GvBRYLGZrcnTTid7JzAKvNPMLmrHvoIgCNqGWTLgX77ShJhShmZRL78IfFHSq83sm+3euaTlwEvIwiWPpR0GnAwcDuwPXCrpEDNLxeYLgiCYUGRTaAStpFPM7BxghaT37ppvZmcVFNsTPg78JXB+Q9qJwFfNbBC4W9Iq4GiavSMQ1Pt3fwXRs8M/G6MzU2GM/T9g5rzpSIVUHZnr6/nk2NEz6D/fNOpfRdrmhEb2QinTJCyyE9J5ywG+bnDuqpR9vu5RazcWpg+s3+yWsdpSN69/Q/HJ8s4hwI5FvnbQu7lTN309IUWcd4+fNzivOD0lG03NDN3jyChnbElsL0G/sy9L9F2k9uV3iZh7fEf7/J159W0bU2mmKmAsYPmcgrxxPbMknQA8YGY36vEa5aXAlQ2/V+dpRds4FTgVoH/mgvGYEwRBRam0Q+2eXpym3Tj/mX+91MyuaMyTdGyzjUu6lOLBV2eQ9fm/tKhYkSmOfSuBlQBzFyyr0GENgmCq020hjsvq7P8VOKJE2uMws8LZrCQ9lWxKw7FW/TLgOklHk7Xklzesvgx4sKSdQRAEE4Lqhuppb1+lh0GzPvvnAM8FFu/SZz8PSPREpjGzX5LFxB/bzz3AUWa2RtIFwJclnUX2gvZg4OpW9xUEQdARplhsnD6y/vpeoPFt3CbgpE4YZGa3SDoPuJUsNMPbQokTBEHVmGoTjl8OXC7pC2Z2b6eMMLMVu/w+EzizU/sLgiAYL2W6carU8i/bZ79N0kfJtO8DY4kxeUkQBNOWNnTj5GONvkQmZKkDK83sk+O2rYCyzv5c4GvA8cCbgdcDj3bCoJaRsNruQp6RWf6rhdqgr+kanukLsWdsLe5Vqo34Z34ksT0rCM0MUBv2be+Z5Z+6GRuK8zSc6A1L6M5H5xTHvNv8BN++mY8OuHm9qxMCaK+l9IQlbpG+9f72+tY7u+lPXfp9bo6nwU/p9lOMJt589TrDJWpDfpnUNTjTCY08NDchjE+N93d2lZJKpuzzxqkkj23Cvt7BDjer2xMuYQT4CzO7TtJc4FpJl5jZre0wsZGyl+heZvZZYNjMLjezNwLHtNuYIAiCrqEOjFp6adbLY/aQmV2Xf98M3IYzrmi8lG3Zj00f8JCkV5JJIZd1wqAgCIJuYA909qdIOrnh98p8jNDjtyetAJ4JXNUWA3ehrLP/B0nzgb8g09fPA97dCYOCIAi6gjKB0LL8c8zsY6nVJM0Bvgm828w2tcvERsrOQXth/nUj8ILcuHd3wqAgCIJuoF3SS0kzyBz9uWb2rfFvsZgWXysBsFtgtCAIgunCmPQytTTrs1cWQuCzwG1tCCyZZDzOvkpx+YMgCCYWI3tJm1qacyzwOuCFkm7Il1d0wtyyffZFVGi4QBAEwcQiM9Skz75ZN4+Z/ZQJajg3i42zmWKnLsAPjj4Z1I3aUMGjtEB7/1hWIiZ836YRN8/VEbd4ylKx6T1GE7r92ogTO7/un+7RAV/w7Y0DmLnGt7tnkyMSb4Zz87gx+oFa3W9CWU9xvUbnFY8dAOjd5m9vplPl+gz/+I34Qw6SeNfZSOLOm7HVz6s7sd+VGH4xNN/Pm/1g8cFIzuswK3E/Dhen9273r7OUbr/joZHr5o8LeYzqtImbhUvwZ6cIgiCYzkzREMdBEATBrjSVXk6MGWUIZx8EQdACmmLTEgZBEARFlOmzj5Z9EARBdyNKqHEq5O3D2QdBELRCmXAJFSKcfRAEQQto1JrLpiv0LJgyzl4GPTt2f1symohnn5plxtOWJ0mc2PoMXxff48TVV1JDvOe21/t8G7YvdrT5QM9Q8b4WXXafb8OWhOA7MfZBvc4lOeKLwZXQYducYlF671ZH1A2MzPGPxYhjev+GxJu6+am5DPxinp6+b7tfppaasmBb8XEa7ffPh6elB6g5Q1ESwznSmnnnlPRt8Y9t0T3/mB3OuIK2EmqcIAiCKU6pbpzqePtw9kEQBK1Qj26cIAiCqU+8oA2CIJgGdFk3znhCHI8LSX8r6YGisJ6STpe0StIdkl42WTYGQRC4GDsdvrtMtpE7meyW/cd3na5L0mHAycDhwP7ApZIOMbOEziAIgmBiUYk++yoFSptsZ1/EicBXzWwQuFvSKuBo4OfJUlYsR5yxccgtUtvhPz9GZyUOjfZc2pgKmTxjU7GN1pOS7O25rEwJyWNKLufVd8sRS90ic25+xN9e07CwBQz0uVmpY2FO6OHaNl962Tfon6vRgdmF6f0b/TL9m3x95WhCHujlWeL/eP96/5puRYrYimS4f2Nie72+DSkZZZ9zH9f7U9LqDndcdFmf/aR14+S8XdJNkj4naWGethS4v2Gd1Xnabkg6VdI1kq4ZGk7ouoMg6Fo8Rz/pjMXGSS0V6sfpqLOXdKmkmwuWE4F/Bw4CngE8BPzLWLGCTRUeMTNbaWZHmdlRfTOKW1xBEAQdwQzq9fRSHV/f2W4cM3txmfUkfQa4MP+5GljekL0MeLDNpgVBEIyPUOOUQ9KShp//B7g5/34BcLKkfkkHAAcDV0+0fUEQBEmsRDdOdXz9pL6g/YikZ5AdjnuAPwcws1sknQfcCowAbwslThAElcMMrHtmL5k0Z29mr0vknQmcOYHmBEEQ7Bmj9WxJUSG1ThWll0EQBF1Ad0kvp4yz1+goM9buLr/0dNYA1BIa4h2+brreX3zYaoN+b1NteOL+7snbV0IzPfthv77Ds4vL9a9LSOJ6/ONen9/v5tW2FW9zdL4T7xew1PgBR4fds8UtgvX5ttccbXnPNv/49Sakg5Y4J3XPjoSD6XvQF7mP7DNvj7eXCqWtoeI6p+45600c2+3OeJM+3031bPHHS/QOd7j3t8wL2go9DKaMsw+CIJhQRusw2uyBEs4+CIKgyynTsp8YS8oQzj4IgqAVuixcQjj7IAiCFrDROpaaBxKwCj0MwtkHQRC0wtigquQ6E2NKGcLZB0EQtMJYPPumK1WDcPZBEAStYHmwsy5hCjl7FcZdT00uYPgnSr5smppXLBFXXSOJi8LLS8XqTkjca57+udfXdNeG/L7H3m3FdqT07aPzZ7l5SsjVPE11Krb/yGz/MnbHPrQYFarHmQMhNf9BavyFRva85de71deWDy+Z75dbUxwGPDWGoec3vm7fZhaPl0jecz2JY+Ho4lP3jrbucPNamjdhTxitYzSRXkaffRAEQZdTalDVxJhShnD2QRAErVDmBW2FvH04+yAIghaw0TpNA/JWx9eHsw+CIGiNeokQx9Xx9uHsgyAIWsDqhintzKs0qGqyJxwPgiDoRq5dYw9mLXtnGa7vYJDtAGsn21gIZx8EQdAKX3qUBxk2XwN9H3eynIMwM18rO4FMnW4cFevIkxrdhMY5FZO7tsM5wam/bAVjAHbaUWyjOXp5IKnp90nE79+wzS/lxf1PzRWQOhapPEejXdvq31T9m7b7u3JsrG0Z9G1IDJSpzyvWpHtx+AHqsxPx+7f6dowucMYqJK7pnkS9vDEMvWsTwf0TYym8a1BOXHoAmzvgb8/Bi5sPYDP79nh77cDMhg7TkdzHnRzE4bvlD9sQj/IgW9jon/wJJlr2QRAELXAb1/V7rfuGVn1i+OPEEs4+CIKgBcxsaDkHcR93Pi59rFV/G9dVplUP4eyDIAhapqh1X8VWPYSzD4IgaJldW/dVbdXDJDt7Se+QdIekWyR9pCH9dEmr8ryXTaaNQRAEKRpb91Vt1cMkqnEkvQA4EXiamQ1K2idPPww4GTgc2B+4VNIh1nRcchAEwcQzpsy5i1tZz6OVUuA0Mpkt+7cAHzazQQAzeyRPPxH4qpkNmtndwCrg6EmyMQiCoCljrfuqtuphcnX2hwC/I+lMYAdwmpn9AlgKXNmw3uo8bTcknQqcmv/ccvF1f39HB+1tZG9gzQTtayKZivWainWCqVmviazTE9u5MTMbkjT3Nq7zB31MMh119pIuBfYryDoj3/dC4BjgWcB5kg4EikZqFI60MbOVwMr2WFseSdeY2VETvd9OMxXrNRXrBFOzXt1eJzNLjE6bfDrq7M3sxV6epLcA37IsUtDVkupkT/bVwPKGVZcBD3bSziAIgqnOZPbZfwd4IYCkQ4A+sr9wFwAnS+qXdABwMHD1ZBkZBEEwFZjMPvvPAZ+TdDMwBLw+b+XfIuk84FZgBHhbBZU4E951NEFMxXpNxTrB1KzXVKxTZVCV4i0HQRAEnSFG0AZBEEwDwtkHQRBMA8LZ74Kk5ZJ+JOm2PIzDuxryuja8g1cvSc+QdKWkGyRdI+nohjKVrpekAUlXS7oxr9Pf5emLJF0i6c78c2FDmUrXCZL1+qik2yXdJOnbkhY0lKl0vbw6NeSfJskk7d2QVuk6dR1mFkvDAiwBjsi/zwV+BRwGvAC4FOjP8/bJPw8DbgT6gQOAXwM9k12PPajXxcDL8/RXAJd1S73IxmTMyb/PAK4iG7fxEeD9efr7gX/uljo1qddLgd48/Z+7qV5enfLfy4GLgHuBvbulTt22RMt+F8zsITO7Lv++GbiNbARvV4d3SNTLgHn5avPZOaah8vWyjLGBLDPyxchs/2Ke/kXg9/Pvla8T+PUys4vNbGzapivJxqBAF9Qrca4APg78JY8fPFn5OnUb4ewTSFoBPJOsFTIW3uEqSZdLela+2lLg/oZibniHqrBLvd4NfFTS/cDHgNPz1bqiXpJ6JN0APAJcYmZXAfua2UOQPeSAffLVu6JO4NarkTcCP8i/d0W9iuok6QTgATO7cZfVu6JO3UQ4ewdJc4BvAu82s008PrzD+8jCO4g9CO9QBQrq9RbgPWa2HHgP8NmxVQuKV65eZjZqZs8ga+UeLekpidW7ok6QrpekM8jGoJw7llS0iY4buYcU1OlpZKFT/qZg9a6oUzcRzr4ASTPIHOK5ZvatPHk1eXgHM7sa6LrwDk69Xg+Mff86O/8qd029AMxsA3AZcBzwG0lLAPLPsS63rqoT7FYvJL0eOB74YzMbc35dVa+GOp1I1h9/o6R7yOy+TtJ+dFmduoFw9ruQt9Y/C9xmZmc1ZH2HLg7vkKjXg8Dv5t9fCI9NqFn5eklaPKZIkTQTeDFwO5ntr89Xez1wfv698nUCv16SjgP+CjjBzLY1FKl8vZw6XW9m+5jZCjNbQebgjzCzh+mCOnUbkxkuoaocC7wO+GXevwjw/+ju8A7g1+vPgE9K6iULNX0qgJl1Q72WAF+U1EPWcDnPzC6U9HOybrY3AfcBfwBdUyfw67WKTJ1ySfbs5koze3OX1KuwTt7KXVKnriLCJQRBEEwDohsnCIJgGhDOPgiCYBoQzj4IgmAaEM4+CIJgGhDOPgiCYBoQzj4IgmAaEM5+GiCpo7PeS/q+pAX58tYWyj9fkqu5dtbfKOn7Tv4XJJ20p3Z0I/mxeG7D7/dIuk/SpyfTrqB6hLMPxo2ZvSIfAr8A2GNn3yI/MbNXdHIH+UCzqvN84DFnb2YfpzjWTDDNCWc/TdHOSUvGJsJYmKdfJumf84kmfiXpd/L0WZLOy9f/Wh7986g875580okPAwcpmwjlo7u22CV9WtIb8u/HKZuI46fAqxrWmS3pc5J+Iel6SSeWqIvybd8q6XvsjHKJpCOVRSm9VtJFDTFznpXX5ee5rTfn6W+Q9HVJ3wUu9uxRFsHxo3n6TZL+PE9fIunH+TG4eez4OXa/NN//dfk+5+Tpf5Nv92ZJK5UPl5X0zryON0n6qrLopW8G3pPvz91XEEx6QP1YOr8AWwrSbgJ+N//+98An8u+XAf+Sf38FcGn+/TTgP/PvTyEbwn5U/vsesqBwK4CbG/bxfODCht+fBt4ADJCFrz2YLLrheWPrAf8InJJ/X0A2ycrsXWzfdbuvAi4BeoD9gQ3ASWQx038GLM7Xew3wufz7zcBz8+8fHrM7t281sChlD1lYib/O0/uBa8iCev0FcEae3gPMdc7J3sCPx+pGFvPmb/LvixrW+2/g9/LvD7Jz8pwF+effAqftsu03AJ+e7Osulmot3fA3NWgzkuaTOYvL86QvkkW8HGMsCua1ZA4c4LeBTwKY2c2SbhqHCb8F3G1md+b2nEMek4dsNqYTJJ2W/x4AnkA22YrH84CvWBY75UFJ/5unH0r2YBqLJdMDPKQsINdcM/tZvt6XySJJjnGJma1rYs9Lgac1vBuYT/bw+gVZDKUZwHfM7AbH5mPIZmO6IretD/h5nvcCSX8JzAIWAbcA3yV7QJ8r6TtkgfmCoDTh7IMiBvPPUXZeI0XxxZsxwuO7CgcavntBmQS82szu2MN9FW1PwC1m9pzHJTbMSeuwtZk9edfKO8zsot12Kj0PeCXw35I+amZfcmy7xMxeu0vZAeBssn9N90v6W3Yet1eSPdhOAD4g6fAm9QiCx4g++2mImW0E1jf08b4OuDxRBOCnwB8CSDoMeGrBOpvJ5rcd417gMGVhaucDL8rTbwcOkHRQ/rvR4V0EvKOhn/qZJar0Y7JwuD15n/wL8vQ7gMWSnpNva4akw81sPbBZ0jH5eicntu3ZcxHwlrwFj6RD8v79JwKPmNlnyEJKH+Fs90rgWElPysvPUhY6e8yxr8n78E/K82vAcjP7EdkUfguAOex+zIOgkGjZTw9mSVrd8Psssjjv/yFpFnAX8KdNtnE2WYjam4DryboUNjauYGZrJV2Rv+z8gZm9T1mY2pvI4uRfn6+3Q9KpwPckrSF7kIzNxPQh4BPATbmDvYfHd7EU8W2yWPy/JOtTvzzfz1DezfKp/GHTm2/7FuBNwGckbSV7T7Fx980m7fkvsi6u6/L0R8nmun0+8D5Jw8AW4E+KNmpmjyp7Wf0VSf158l+b2a8kfSavyz1k3UKQdUGdk9dDwMfNbEP+Ivkb+Yvjd5jZT5ocq2CaEiGOg1Ioi0M+I3fUBwH/AxxiZkOTYMvzyV5KNnsIpLYxx/IJsCW9H1hiZu9qj4WTS/4QOcrM3j7ZtgTVIVr2QVlmAT/Kuy0EvGUyHH3OEPAUSd+31rX2r5R0Otk9cC+ZgqXrkfQeMjnmNyfblqBaRMs+CDqMpKvI5JmNvM7MfjkZ9gTTk3D2QRAE04BQ4wRBEEwDwtkHQRBMA8LZB0EQTAPC2QdBEEwD/j+fFlJAsJYIewAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "data_jan_normal_mean.plot(robust=True)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEXCAYAAACDChKsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACDxUlEQVR4nO2dd3wUxRfAv+8uvRMgEAgQmlTpvWOlKaigqKggioViwY7dn713RRRRUFBBEUFRkSq9d6RD6DW93/z+uAMSbja59ATm+/nsJ7m3M7Nv9/b27cy8eU+UUhgMBoPBkFdsJa2AwWAwGMomxoAYDAaDIV8YA2IwGAyGfGEMiMFgMBjyhTEgBoPBYMgXxoAYDAaDIV8YA2IoNESks4hsK2k9ihsReV5EJpa0HgZDcWMMiKHQUEotVErVK2k9SjPi5H8ickBEYkVknog0yrJ/hIisFJFUEfnag/ZyLC8il4vIVhFJEpG5IlKjcM/IcDFjDIjhokNEvErw8AOAO4HOQDiwBPg2y/6DwP+Arzxsz7K8iFQApgHPuI61EpiSX8UNhvMxBsSQJ0Rkj4g8IiLrXW/QU0TEz7Wvm4jEeFLWtf9uEdkhIidF5FcRqZLDcQeLyCIReUtETonIbhHpmWV/FVcbJ11t3p1l3/Mi8pOITBSROGCw683/fyKyWEQSRGSGiJQXkUkiEiciK0QkOksb74vIfte+VSLSOZ+XsCawSCm1SymVCUwEGp7ZqZSappT6BTjhSWO5lL8e2KSU+lEplQI8DzQVkfr51N1gyIYxIIb8cCPQA+fDsAkwOK9lReQy4FXX/khgLzA5l+O2BbYBFYA3gC9FRFz7vgdigCpAf+AVEbk8S92+wE9AGDDJJRsI3AZUBWrj7A2Mx/m2vgV4Lkv9FUAz177vgB+zGsM8MBmoIyKXiIg3cAfwRz7a8YRGwLozH5RSicBOl9xgKDDGgBjywwdKqYNKqZPADJwP1ryWvRX4Sim1WimVCjwJtM/61q9hr1LqC9eb+wSchqeSiFQDOgGPK6VSlFJrgXE4jcMZliilflFKOZRSyS7ZeKXUTqVULPA7sFMp9bdSKgP4EWh+prJSaqJS6oRSKkMp9TbgC+RnvucQsBCnIUzGOaT1UD7a8YQgIPY8WSwQXETHM1xkGANiyA+Hs/yfhPNBldeyVXD2OgBQSiXgHIap6vLmSnBtm3RtKaWSXP8Gudo6qZSKz1J2L86exRn2a3Q7kuX/ZM3ns+clIqNFZItrKO40EIqzJ5RXngNaA9UAP+AF4B8RCcitooj8nuW63OrBsRKAkPNkIUC8pqzBkGdKcjLRcHFzEDjrESQigUB54IBSag85GyVdW+EiEpzFiFQHDmQpk++w0675jseBy3HOKThE5BQgOdfU0hSYopQ6M1f0tYi8h3MeZGVOFZVSPXPar2ETziEy4Ow1ru2SGwwFxvRADCXFd8AQEWkmIr7AK8Ayl/HIE0qp/cBi4FUR8RORJsBQzs11FJRgIAM4BniJyLO4v9mfxeU8MNhi9wpggIhUEhGbiNwGeAM7XHW9XHMrdsDuOh/LF71cyv8MNBaRG1xlngXWK6W25uHcDQZLjAExlAhKqTk43Uun4pwXqI1zUju/3AxE4+yN/Aw8p5T6q4BqnmE2zjmS/3AOjaWgHxJDRHxw9qSWWrT1Os6J7bXAaZzzHzcopU679j+Nc/jsCWCQ6/+nc9DNsrxS6hhwA/AycAqnE0JBrrHBkA0xCaUMhsJDRDoBw5VSN5e0LgZDUWMMiMFgMBjyhRnCMhgMBkO+MAbEYDAYDPnCGBCDwWAw5IuLeh1Ijx491PHjx0tajbOkpaXh4+NTJG0rpThy5AiHDx9GRIiIiCA8PJxTp05x8uRJ6tSpw4YNG6hduzZhYWHa+qtXr6ZFixacix5SvOdQXJT1cyjr+kPO53DkyBGOHz+Ov78/cXFxOBwOss7lVqpUiaioqLOf//vvP0JCQqhcuXKBdFq1atVspVSPAjWSBRHxqkVA+i6Sqrtc0cseSqmLdmvZsqUqTcydO7fIj+FwONTWrVvV7bffrqpWrarCwsIUoKKjo1WtWrXUqVOntPXi4+OVv7+/cjgcObZfHOdQ1JT1cyjr+iuV8zncfPPNysfHR3l5eanmzZurr776Sv3+++9q9OjRauzYsSojIyNb+R07dqhq1aqpf//9t0A6AStVIT5/ulNeVcRHNSRIFWa7xbld1D2QixERoV69ekyYMAFwvun5+voSEBDA3Llztb0PgKCgIHx8fDh16hTh4eHFpq/D4cBmMyOthnO0aNGC0NBQevTowcGDB1m1ahW+vr74+vpy8OBB3nzzTfz9/bn66qupV68eFSpU4Oqrr2bt2rV06NChpNUHnL2PCvjQiwj+4CgiUk2VwV6I+WVe5Pj4+BATE0NqaioffvhhtqGArOzatYuEhIRi1e3xxx8nMDCQJ5544qxs586dxaqDofTRrFkzJk+ezMcff8z8+fOpW7cukZGRBAYGkpKSwjPPPMPmzZvp3r071apVIywsjHHjxrFlyxbmzp0LOF+cPvroI/r168eePXtyPWZiYmKhnkN3yqdXxQ9/7DQjlIYE7SvUAxQXJd0FKsntYhzCsuLIkSOqUaNG6rvvvtPuHzt2rBo0aFCu7RTGOaSnp6vnnntO1atXTy1evFjZ7XYVFxenxo8frwC1aNGiAh8jJ8r6EFBZ11+pnM8hISFB1a5dW7377rtu+xYuXKhq1qyplFIqLS1NLVu2TCUlJakXX3xReXl5qcqVK6tRo0apxo0bqyuuuEKNGjVKXX755TnqkpmZqfr3719oQ1iAVwV81O1EqXuooYZRXUXgo4BqhdF+cW6mB2IAICIigi+++IIHHniApUvdo3AkJibi7e1d5Hrs37+fbt26sWjRIi655BK6du1Ku3btCA4OZtq0abRt25aXXnqJOXPmcPDgwSLXx1D6CAwMZPz48bz11lv89NNPpKamsmvXLv73v/9xww03UK+eM8q+t7c3bdq0wd/fn2eeeYb09HSWLFlCaGgoo0aN4q+//uKNN95gz549Z4d0dcyePZstW7YUmv5Zex8AgpTZXogxIIaztG/fngkTJtC3b1+GDx/OihUr2L9/P0lJSfzyyy9cddVVhX7M9evX89VXX1GvXj169epFq1atuPbaa3nmmWf4559/qFOnDiNHjuT5559nxYoV9O7dm9DQUF566SVatGjB+vXrC10nQ+mnc+fOvPDCC7z33ntcffXVXH311ezYsYPvv/+eGTNmWNaLjo7mxRdf5O67nQkrfX19efnll3n++ect6+zcuZPGjRsXit4i4rWBeJqeF4szGn+Ok4Yrt02ZwUyiG7LRs2dPoqKimDVrFjNmzCAuLg4fHx8aNGjAr7/+ysCBhROLTynFSy+9xGeffUa9evW45557uOSSS4iKisJms9GzZ0+efvppnnzySe6//35uueUWZs6cSfPmzc+6EU+ZMoWrrrqK1atXU6WKZTbcs8dLTEwkNjaWxMREMjIySEpKwuFw8OOPP5KYmMh7771X5t1fLyaGDh3K4MGDufvuu9m8eTPPP/880dHReW5nxowZ7Nmzh5SUFPz83JNMvvvuu3z77bdMmVLwdPLdKZ9+kvSzvY8znOmFxJC8j/ylCSgZSnoMrSQ3MweiZ9iwYapnz54qLS1NJSYmqu+//15deeWVKiQkRB0/fjzHup6ew8SJE1WjRo3UoUOHsslTUlJU/fr11YQJE1RCQoIC1KhRoyzb6d27t2rVqpXq2bOn6tixo6pevboKDg5WX3/99dkya9euVT4+PiogIEBFRkaq8uXLK5z5QVR4eLi68cYbFaBOnDiRp3MorZR1/ZXK+zk89dRT6p577snXsRYsWKAAtXHjxmyyxx9/XO3du1fVqFFDbd26tcBzIJw393H+VhbnQkwPxOBGuXLlqFatGgcOHCA9PZ2BAwcycOBARowYwT333MMPP/xQYNfa+fPnc99997kt7lqzZg2+vr7cfvvtfPDBBwDs3r3bsp2PPvqIbdu2kZmZSWBgINWqVSMhIYFrr72W3377jaZNmzJhwgQeeeQRXn75ZQBWrFhBhw4dmDx5Mv3796dly5ZMmzaNoKC85LAylCb69+9Pv379OH78OBUqZE8UuXPnTrZs2YLdbqd79+5uvYzOnTtTs2ZNunfvzpVXXkm5cuUYO3YsDRs25PXXX6dcuXL07du3wDpa9T7OUBZ7IcaA5IETHz2qlftXqqiV+3S4RiuXU/rJX+WA1PjT7uVTLdxnvfTDLQ5ffcprW/IpfXm/0Gyf27dty5133cXLL79CSkoyizbuolz58tz16HPcOeBaht43gqf/95p2RbpKTyVx3xa3oSBbelK2z2tXLGFQj06kJmRP2b1p/Vrq17uEU4djGDPmKRb98xeDhtzF7N+m061LZ9K9/LOVrxBRiQoRlfA6T5UF8+fz559/smr9Rp5+8WWu7tWbw7FOV8xqlzTkltvv4JZbbsHLy4txX33Fw48/ycnkdEJdq5qTU1KytbckJu9ZYMP99U4HlYP08nBl4Sq6aZ5WbPML1MqVCnDTH2BfXJq2vI9N/6wK8dU/6Hzt+vJ2i3YAbGlJWrlYyFVGGulH3F8cxJGhLV+/Xj1uHjiQxo0aMWPGDC699FIyMjJ46IGR/PLrb7Rq2ZwDBw7RulULPn3/HQB8Qs8ZmooVK/LII48AThffuXPnUqlSJebPn8+gQYN48cUXeeWVVyzPzxM2Ek9PInIsE40/a4lFRCoppY7kWLgUYCbRDW5cffVV/P3nbFJSkvH3D+CugX35d94cfHx96X/rHfzy4xTGffyBW73UlBT27I8hqEZDfCLr8MRLr7N4+aoz3fezLFi2ku279hIVWcmtjT9m/0n7tk7PmSqRkaSkpuLv70dQoP5haUVERASDBg3iuf+9wtW9ervtf/2d99m8ax9/zF1I+fIVWLr4XxLiTarwsoqI8Pzzz/PGm29yQ//+nDp1ih9++IFNmzcz/69ZTP/he/75fQa/zfqDrf9td6tfp04d4uPjuf/++3nwwQfp2LEjderUYejQofj6+jJmzJgC66jAsvdx9jwQwvEByHlSr5RgDIhBS4MGDVi3/wTLdxzgvoce59nRo/jh2/Fs3bSBK3v15uN33+K9119m/949pKak8NbLL9KxaX0cDgezf/yGMQ+NIDgwkMEjRjPmlTfPGpHvfp7JoBFP8OxD91G9amS2YyYmJvLLrzNYuWo1KSkpDBt6JyMfGs2RI0dp3qxpoZ9jYFAQjS69lB9/nUlGejpz5xRWAkNDSXHjgAH06tWLu+++m6eeeopnn3qCOrVqARASEkz/6/oyY+Yst3ojRoxg4sSJlu0GBAQUWDcB7JL7VibGrlyYISyDJV5eztvjil7XYLPb+fy9N7mqT1+++GAS94x8kO+/Gc+Xn3yEn78fbTt05pe/5nNgy1ruHf0UqWlpXN+7B4t/n8bVN97OsSOHaVz/Et76bDx/fvcFjerVcTteQEAAs2fOYPRjjzN/4SIG33Yrvr6+dGjXFrs95ze3gp5nm3btWbxoIW1bNCuy4xiKhxdfeIHaderw5htvcFnXLtn2RUVVZdMm55oOpdTZYdjWrVsTExPD4cOHCxx0MSfsOQQiPYOUoRx/pgdi8IjQ0DB279jO+tUradSkKa3atmf+qg1Mnf0P0+cs5NX3PuTH777l6PETzPjuK9bN/4M//pnHuImT+eDVF/h74VJWrd/EL199qDUe4ByG6NihPUPvHMKLL79KYGAgd985mEYNGxT5+XXq0pWli//lsu7d2bt3b6GHrjAUHyEhIbRq1SpbRN4zdO/SmUlTfqBVx6706dPnbM/4tddew+FwcORI0U07eNwDKUNdEGNADB7Rsl0HPprwPX/PmsHSRQt46uGRtGtUlwP791GlahQTvvic2b/9Sv26tbmkdk1CQ4K5omsnPh0/kVZNG5OUnMIbY0bTumnuC7LuGjKY/TEHOHjoUDGcmZOOXbry6bjx+Pv7k5KSQutWrVixYkWxHd9QuNSrV481a9e6yfft209wcDCPPfwge/bsYfr06QDMmzePsWPH0rRp4Q+VnkFwOizktpWlh7IZwjJ4TJsOnVm9+wjpyQmUr1CBmb9MY8zDozhy+BBT/5jDFx9/gMPhOFv+0gb1OXHyNI+/+Bp2u514D9/q09LSSElNIcC/4OPOnhIfF8cN1/TirTffJDo6mldeeYWbbryR+fPnU6169WLTw1A43Hzzzdx6663cecsAKrrcemMOHGTk6Mf49cfv6dCuLUdPx/Pnn3+yYMEC5syZUygT5Tkh4tkQlk3EOeNeBjAGJA8E3/a4Vj5zf7pWvmr9aa38qW4d9Qc4skjrpiiZ+vZ3ZoZo5TW99a6ObFqgFXtX1w8R1dOt9bCDeCdC7FGGd6tH5adGcNOoMSyYPJaE+DiSEhOxJ54AoH/3Njzz6pukp2fy8QuPUj8qAlLPMyLK/ZeSnpYGCLPnLeSmG2/Mtu9Yov7cMi1+cIHe+ve5cHv2a7pjx2aCgwK57ob+rF65kmv69mP3nr3ccsstzFuwkG3H9cbPlsMDoUed8lp5kIVOttN6N+tDv8/WykNqRmrlqlwjMqe+4Savcp3eDf2/E6laudU1DfLR618hyTo2mSOgnFbudXKvVi5KIZnubscZGxdpy9tDs1/rDn5w6xXtuPHWO/hlyiRCQ0N4+PEnuX/YnXRo2xqUg4CAAP766y8SEhKoV69esYR6t/CAzkYZGsEqU70lQylDROjf8zK+e+8lYuMTmP31+5QPO7empEJ4GD9+9BrhYcF0bdPc43aDgoKYNXMmDz/8MFf36EGLli2pXqMGXbt148fvrD1lCkLdOs55mS/HfXFWNmLkSFavXk1MTEyRHNNQtLx4zy00bdKYFh26Mv7bScxf+C9Dbht0dv8ZT62PPvqI9PR0fH19i1Qf5xyI5LqZORDDRcVNva/gy9ee5oqObdz2dWvXkjuu78NTb3+apzZbtWrFjF9/5YnHH+fbb75h2dKlPPfss7z18gusWLqksFQH4MuvJ1CnYWMaN2xIv37XnZXbbDZ69OxJh3ZtWbfgz0I9pqHosdlsvPfGq3z1+Ud8MvZLIiIqUi7LC47dbmfIkCEEBQVZJlIrTATBW3LfbGWoD2KGsAxFzk19ruTaux/Oc70WLVpk+xwZGcnLb7/P6OHDePiJMSQlJRESEsp/WzcTXjGCgbffma+Q87t27eLhB0bx1OOPkm73ZW+WBEM//PgTq1evove1/fD29aNh2y7WDRlKJV07dWTpvL8YNPQehtw7gm+++PSsizrA9u3b8fb2Zt26dUU6iQ4X3hCWMSCGIqd29SgOHDlGckoK/ppop3nhih692LBuDTOn/0zFiEqcOnmS2nUv4ctPPqRCRCV6XtMvT+2dPh3LF1+N5+cfrSOttmjRknte/YxPHrmT+q07Ed2wKaeOHWbnupXEHj9C+cgoGnfozqUdLqNavUbaEC+GksVutzP+s4/oP2gwPfsNYMIXnxId5gwrct9993H06FGuvPJKJkyYQM+ePYtEB08n0cvS7WMMiKHIWbRyLZEVK2C3Fc5iwIcez+4tk5qSwqSvx9GyTbs8txUSEkyHdu34dcZMOrZvb1mudtNW2Gx2ajdpxYlDMRzdu4sbRo2hUrVoDu/ZydJZU3ln0kDCKlamfe/+tO/dH9BPohtKBj8/P6ZPmcTr77xP++5XMu3nX2jfvj12u50XX3yRK664ggEDBhTZWpAz60A8KVdWMAbEUOSkpKVRs1okPj5Fk9Fw4tfjaN2uIxGV8r6C2Gaz8dXYz2nXpSvLV66kRas2XHddP7dySXGxZGSk0/2mIdl6GDYRykVEMveHr+lz90NE12/C4t9+4NXB19Bs2nQuqV/0iyANnmO323nq0Ydp3rQJ1157LVOnTqVLF+ewZL169Th16lS2Feqpqals27aNTZs2FfjYZ9aB5KpjGbIgxoDkgS+36KPilg/QR8VtWFkfFbfpI79r5Y908eb5cRvd5KnJetfVq1vr3S+vbah/kDa5pK1WnhysL+8bf1grl5PWC/wc3v4kRl6aTdboyiqsfOBpMlJT3EKSeJ3Yo20nM0QftTQ5wz3k+prVq+lxbT9t+ZQMh1Z+xJHl1g+uyD2jRjNpwlfMmvkbV111ZbbIsn/88QfvjBxFr77X06lGeLZ2YlMy2LltM4d2bOLtsV/j6+vHtVd258/pP3Lz5Z14r2MLLi0flq2OvYH7CmmA4OruwSUB4vcd1coXfq53Jij3RjS7/3RPS1wt8SVt+Yh9+jdur0D9cGOFHvoo04d/maqVA1S5bahW7ggM18ozTu7i5HfuMavsfvrfmr8mMCeAPV7vGt0jHCZPnswNN9zA+++/z8CBA1m/fj2dOnVCRDh69Cjvvfcen332GZUqVSq0jIQeDWGVoT6I8cIyFDnlypVDKcXJ2KKJdnvi2FHKV9CH1M+N2NOnmDBuLO+/+RqjnxhDbGwsqeeFQp81axa9b7iJ59/6UNtGakoK4RUi8PU998C9qu8AnmvdmFGLVrE/QR+y3FCyXH755fz222+8++67tG7dmpkzZ6KUYsiQIWd7I6tWrWLLli38+OOPBT6eeBDGxIQyMRjOY/26dVQoF0rF8LAiab9ylSj27t6l3Xf40EEevv9uxn3yIauWL8PhcHD82DG+/2Y8w4feQafml7Ji6WI+/GI8V/ToxbSff+bAgQMcPXrurX/lypW069zN8vgRlSM5FLOPtNTsPcIukRF0jKzIM8vXs/V0XKGcq6Fwadu2LcuXL+eJJ55g1apVnDp1ivr167Njxw4+/fRTatasWajHM9F4DYY8EhkZSWamg7FTpjPspoJndjuf9p27Mf2HSdx8x51umRKPHDrILz9O4e8/fieyShWSkpLIzMigTfsOdO5+Gf978x3KhZ+b7G7ZsiUbN2xg1apV2bxx4uOyJ77KSoVKkTRu2YapE8Zy87CRZ+XpDgfrT5ymbmgw76zbytiu7utkDCWPiDBgwAAGDBhQpMexceHNgZgeiKHIERGSU1Np16xwxpHP5+pr+pGYEM+Mae7DDE1btOKlN9+ld9/r+GPhMj77ehJvfzKWD78Yz8BBd2QzHgB//fUXNpuNq6+++qxszJgxvPu/51i55F9LHfrefAfz/piRTTZtVwyVA/x4tW0Ttp2O50iSe5ZAw8VE7qvQ7VKWZkCMATEUA889+wy39etBk3q1i6T9hPh4Yk+fxt8i+KIzs6I/IkKjJk1p38l6MeCmjRsJCgrK1pPp1asXt98znBG330hGht6hYe/O7XS+8lzmw8zMTMZt2clDTerhY7fTNqI8S44cz+cZGi4ECnMORESqichcEdkiIptE5IGiPwN3jAExFBk7duzgjddfY87ff/P0fXcU2XHeefk5wstX4Iqe7qlrASKrRBGzf59HbW3fscMtJpKI0H/QECIqR7Jlw7ps+zIzMwFYOu9vatWrf1a+avECKvr70qCcM3RGh8oVjAExeNgD8agPkgGMVko1ANoBw0WkYZEqr8HMgeSBay6poJUnZ+jDltotzPPsF67QyreuWc47HZq5yfec1nvxRIfp37h3ntKXrxSl91RKS9K/VVcJ1rvSEhzB/gS9e6ycWI6PI4309HRuuuF6OnXswOSJ3xBYpymZmvKLjut/LMdj9BGIp6zc4iZLbnkjJ9Y8yQtvfUD3Abdn29c5uhyNmrfk8QeG071NM5q2bM3rH31OVQvX63Z1qxIXexqfQ5uzyRslnuLhm3ow9vmHmD32DS7pdRsBfn7sPniYSxvUZ9eevYTF7WXhV6/zwLAhPPXpG/SOrEx6gjOibKugEN5dt42U+FQ2TFiuPbbDIvztjJi8TcB3OJnM9Mmb3eS37tHP49TqoR9anPvOXK38xqt6aeWx975tqZPDV/9jqJJyQCtPPp7Aui/dI+82vl2/WDT0Ov3Lgy2l9OS5L8yFhEqpQ8Ah1//xIrIFqAq4f/FFiOmBGPKMlfHIyr79MSQlJ/PJh+/Trm3RTh7bvLwICg1n5vgPz2aYy0pk1Si+nPIzSil+/WkK6el64wRwa79exMUnuJU5GRtHUIAfB4+e4PmPv2b/4WO888T9HNiwnIfuHUpkpQj+9/YHvPPJOOq3v4zy4eW4oXrVs/Ur+fsR7uvD2pOnC+28DWULAbxttlw3V4qA60VkZZZtmGW7ItFAc2BZ8ZzJOUwPxFAkvPjyKyiHo9DjQu2aN439S2cjNjtisyE2O4nHDuCt0ok9cYyj+/dQqbq76+WbLz5D3xtvZuj9o/Dx0fc+AAID/PH18eHrn2Zw983Xk5CYxLylK3nqtfeoElGBQH8/VmzcSoVyobRuXI/QkGBu7NeHG67pSUpqKkeOHSclJZV6dWqx8e77srU9KLoaj6/ZSO+AcgwKK7q824ZSioB40AVx/WSmKaWeyb2sBAFTgQeVUsXuK24MiKHQOXL0KHPnzaNrly6kpaXl+MDOK6d2bSa8dmMqNW6PcmSiHA5sdi+6NKrGK3f2Y/X82fS87V4A0lNT+GPGL0z7fiIHY/Yz+N7h+Pn753qM2jWiuH/4a8xdsoIFy1YRXa0qY+4ZxI09urkZxDN9MbvdTmBAALVqWGcvvLZaFcr7+vDtpt35Pn9D2UVEsHkyhuXhuJCIeOM0HpOUUtMKolt+KXVDWCLSQ0S2icgOEXlCs19E5APX/vUi0iLLvoEislpEHixWpQ0AJCTEc/ToMdq070T/668nPi6ODl268cfsP7Olui0IvsFh7Fs8i6ObllGpUVsqX9qeiIatqdGgCZWj6/DHhE/Zt20jcSeP88rQ6/h+/Dh69r2ePxavIjDQPQyKDj9fH/6d+jXd2rXiwxeeYNFP47mpZ/dC6U2dTEtHlZV8pYZCR+y23DePIvaKAF8CW5RS7xS54haUqh6IiNiBj4ErgRhghYj8qpTKOjHUE6jr2toCn7r+AgwEWgOTRCRIKaUPXmUoEt566Vm6tGvN9Gk/0qxpU5RSfD/lBwbfdTdjHhvNqPvuOTtHkZ+HscPhwO7jR2rcKfYsnEHj/sPP7rPZbLw05W9W/P0brw69Hr+AQBq268LXEybk61gRFcIZdssNea6XE/sTk/hw2w6eDjc51i9KBOwW6YCzFfNgsSHQEbgN2CAia12yp5RS7gHEipBSZUCANsAOpdQuABGZDPQlu2dBX+Ab5XwSLRWRMBGJdHklnLnyirIVEeDCQISQ4GCauZLyiAi3DLyJRg0bcEWPXnz1zSQAUlJS+OGb8TS5tFGemj959BA7/v6BLo99ileAvjfR+oo+tLys19l1HKUlN0eGw8FjazZwd52aNEgsWE4UQ9lERBCbB4M+HtyzSqlFlIJnXGkzIFWB/Vk+x3Cud5FTmao4XdqmASuBiUqpQvff8/XSf/nBvvrv0dviTSItUz+c42sXosPc5wuqhujDoFs0Q9WQUK3cKhKoj8ZzCeCEPtgvAd42+ry1IJssIzmeLZOnMGjADSSTXd9LmrTk38272fnfVk6dOMGJ48e56roBtGzbnuTydWjRb4jbgz7Yz/3WjD0SS7nQID568Ga3fYv3nT73QWyc8Yit5TimPQfH4gVa+YE5C0hr3JUDc7Ovav9nrHt0W4Cej+tdsgEi29Y5dzyHInL7duYnxrP11EnKe3kTbvcmytuX+n6BADTsr3enrbBOn5N9/N95m0sJrqI3uj4henfwa96+Ud+Ql/5+rOtvvdI+46+vtXK5VJ+DJbhOdbpM/8BNnlKtpba87ZB7FGuAjPLRljoV3syc53gyB1JK3nk8QnRujyWFiAwArlZK3eX6fBvQRik1MkuZmcCrLguMiMwBHlNKrfLwGMOAYQDR0dEtx48f77F+GRbj+FYLf6xuBKtrnpSYSEBgoKa8RTt6sfVridWOPLa/44j7yGB64mkc6SnUrhapPYfzo6qnJCeza8d/2L19sXl7ExpRNdsFs2uMr1KKUzG7CAkNpWKlyGz7EtN0q0ygvK/FWSTrRzfT4+JJ8Q/GLzn7+0f88URt+dDKIfr2AeXIfmyHUsSnpJEUn0yGUmQoRbwjk7q+/qQ6FCHhAdqvKD1Z73Z8Ik5v4QOjKpEY4x6ivWKYvufjHax3LLDZ9QnAbAHu3y+A8tEbIgAVd0Lflr++rYS0TIJ83V8iHBbHsKUn649rtzYTYs/b+3P37t1XKaVa5alSFi4JCFSf18s9nM9b+3Yz6+SxFkqpNfk9VnFR2nogMUC1LJ+jgIP5KGOJUmosMBagVatWqlu3bh4rdyxOv0DPx+KtIq89kFXLl9KstftCqXSH/iFo1QOxWsBo1QOxMmjpFu0/dl7vQzky2TXlPcKbXs2XI+toMwMeOW+xolKKO+64jetem8zfHz5NzdbdaH7NbWf3B3vrb80ru15Cr3bN+HPFRkLCws7Ks/VAstC3hn6RpGOjvgdyZPECtjbuSv2N87PJrXognXLogWQkp2nlG745t5Cwz6619Agpz8KE09h87FxeO4re9WrQuUYkdtdwx1GLHsgMix5Ih7dGs/gR90V9915fT1u+aif9Ama/8vqerH+dDlq5o0YTrRyseyC+0foeyMK9cXSpGeYmt+qB+Fn1QHKYb/IJs1goW0SICHaf3LNyeuLqW1oobV5YK4C6IlJTRHxwTor/el6ZX4HbXd5Y7YBY1/yHoYQ48PcXZCTHE1JL/+PWkZgQj3I48PLxpduwMayYOo5VP39laczOEF6+Ao2aNWf9mpUFVbtU4CM2tqcm82W1Bsy8vTcNI8J5b/F6un85nS9WbCY2xWIc0VD2EOcEeW5bWaJU9UCUUhkiMgKYDdiBr5RSm0TkXtf+z4BZQC9gB5AEDCkpfQ1OxGYjrEFn7H764QgdU7+bSIeu3QkIDScgNJyBb3zHtOfuptIlTYhqlPMogb9/AOlp+rf7ssY95avSMTCUILsXkcGBDGlRnyEt6rPu0HEmrNlG13HTuaJiBR66pA7enkzAGko1NqvhgSyUFscPTyhVBgTA5YY26zzZZ1n+V8Dw8+sZSg6/8tVJPOB5CJ7lixfx+ftvM/6nX5njyjgaElGVNv2HseLHsbkakGNHDlO+YvEOPxQVV4eU18qbRlbgncgKHEtM5oEf/+HznbsZUbdoohkbigcR8Wx4qgy9J5QhVQ2lleQjO7H5BJAYs4XTp0/nWHbb5k08eNcdvP3Zl9RrmN2Nt17X3pw+uJeNf03lRMxu5o5/hxnvjmH1rCks/uELUpMSUEqxb/cuatS8OB6mFQP9ea5RA6YfOMTB5GQSMzI4lmqGtcokAnYfe65bWRrGKnU9kNKMn5fFZLnF9y2Z+h+6v+jttg0ItLvPAaRbdHvTLaK3Wog5lKD35gmyWNxkNen+y8Od2XP6nMvmn+V68elrz3Ny3zL2t3iSP7cfw9s7u/fLH5sOsm/Nvywa9yptB41mGTVYtmA3C5fuz1YuvOu9LP/jV7ZNH8uVl3WneqtL2Ld/O8kpKUx95Eba3NgVXzJpsemHbPVqJOi9qpItOkZeIXrvqcCqFbD7eBFYNXvk5aUn9V4+XQ7pvYsAjm85rJUHVNB7Pe2dt0Mrd6Slk5SRyYvrNvNfUiJ2ESJ9fAkXH2oTQDm8sw17hAf6cGu7qm7t+JfXDzE60vWOBqmn9Z7wfpGXaOX2eHfPrzN4tbxMK7dys808uJ5Tkc3d5MnJel1DK+vXFOX0KC52N16PY2EZA2K4gMlqPACuuu5GKlauwh/TvgcElcXdOTUlmSmfvM2fP/9AcKWqdBj8CLXaWXsuBUW3ICi6BaufcffkeuTJp7nv02+pVVk/7HOhkomiT4WKNA0KoXVwKH42G+sT4pmw8wDTOYIXQojyIhNFBor6yUkknz5Fm7ByJa26IQuCYPOgd1GG7IcxIIbC4dJWbfn4lWeocGN/fHzPrTeYOvYD9mzbxLXPjyOsanS+209MTGTa9F/p36EppxL1vYELlSC7Fw9ERWeTNQ8OYY8thS4qnGOkkUwmdgQvhHI+Pry0axdNQ0IYUSOaUG/9wj9DMSPOWFi5lys7FsTMgRgKTEpyEk/dM4gjB/cTGBp2Vn5g9w5m//gNI156t0DGA+D1d95DKUW5oABqX2Q9kJwQESLElxoSQJT4U1n8CLZ78XXTZgR5eXHH+rUsOXWypNU0uLDZJdetDNmPnHsgInK9B22kFHcAL0PpIS01lUeH3IiffwCZGZko5Tg77vzDZ+9y3Z3DCY+oDCePFug4UVWrcvzESSbOW8nzN/couOIXOAF2Ow9E16R7eHme2b6N0TUV/alU0mpd1IgINo8WEpad9/rchrC+AKaT81xUF85zuzVcPCz6exY2sVG7fiNOHj/KqWNHyfSOoULlqmxYtohbR7lF5M8TJ06eZM7c+bz30SdUrFCBw0cOU6/qheHCWxw0CQnhjfoNeGzrFsKjy3FZjcjcKxmKBvEsFlbJh0j0nNwMyO9KqTtzKiAiEwtRH0MZY/a0KfQZeDtR0bUICg7BkZnJy/ffTrsrehIcVo6KVaLy1W5CQgKPPf0cP0ydRqcO7XnuqSdo0bwpp/6cRIva+WvzYqVeYBCv1avPkwtW81ynZlwVXaVMefpcSHjioluWvpocDYhSalBuDXhS5kLBMhahVYwpL199O5bhOhTicHdT9LbpvyZvi96wQ/Q7qltE9bWKeWV1rzeOCCDA29nNjqoQRjhJ3NGrC3f06sL8hf/SqHEjtixbwLdTZ1CxojMC7Pv7T2vbeuVO90WDm1cto1Xn7nTu2JGdWzcTksXlVh3VB6OzpekjwSZZuNmWb91VK1dpSxC73S0O1AuvX6Mtv+bzRVo5wPKDejfYgyl6V9TC4nRiGnNWuIeHe6lWHV5duJ4P/91I59ByBNm9qB8QyODLW2vb8Wt9pVaeYXE/Zvpbe30lh+vnrfwz9EEqbUCQzT1AZqCfxfBOGXjoOjMSXqQr0UWkAxCdtY5S6psi0MlQyjljPACGDx/OXXfdxbB77sFut4MIr3/0hfPHko/QGyeOHuZ/w2/n67Gfck2f3oWp9kVPg8Agvq5/KSviY1mfEM/JjGQmHjlA1LrtXNG0bkmrd+EjeDQHYvnmVgrxyICIyLdAbWAtcOa1QAHGgFzktG3XjoyMDFYsX0679s7IqnaLMOCesGvzBmrWb2SMRxFhE6FtSBhtQ8IAaBwYxGezlxgDUhx4mFDqQuyBtAIaqtKUPMRQKvj7779JSUmhWXP3VcP54cex79PrFhMfs7hoFhTCp/9tw+Fw5KvHaPAcwbNgimVpEsTTO2YjULkoFTGUTWrXrk2VqlUZ0L8/hw/rQ3fkhfS0VKrWuDjiXJUGynv7EBLgx3+Hjpe0Khc+roWEuW4XigERkRki8itQAdgsIrNF5NczW/GoaCjN1KpViwULFtC8RQt6XH016en5C7PucDiY8M7LHDt4AB8/kzO8OGl7SQ2WbN1b0mpc+Ihg8/bKdbuQgim+VSxaGMo0Xl5evPjii4SGhLBnxw4q1GxAaB7jMB3Zv5c5P3/PB9PnEl7RLHgrTjrWr8GSbXsZYuGNZSgcBEE8mR8sQz2Q3Nx45wOIyOtKqcez7hOR14H52ooXKLo83flCWfjNik2bw9nKTdgKm8VUlZ/FIiarlLyZFu1kOJQ2Uu/Dox9h0neTmPnzT9wy5O5s+xpX1xuUWJdL628/TKJGgybYg8sTm5LByQz9renTUe81HrZ/uVY+qU5Nrby+RS7ujp0rY9uyH98212WT+8Ud05aPWrdLKwfw26YPITJ5VdEm0Azx9aJHLffrrSzCNEdHRjDl3/Xgld3NWyXFast7ZeijTDuCrRd4+gbo7/lM3yDLOlosIlk7LPx4S9Wz+CKOhaVzCO9ZmIoYyg5WYd4BypUrz8/ff4vDYWEkLchIT6PGJfrc3IaiZf2egzSJrlLSalwEOF3bc9supDmQ+0RkA1BfRNZn2XYD64tHRUNZIjA4GG8fH7786N081et63c0s+PVHMtL1OUsMRcfqHftpUadaSatxwSM2sPl45bp5lLWwlJBbD+Q74Bqc8bCuybK1vJhWoBs8R0R4+/Ov+eqT9zl+zPMAilVr1qVanXrM+vaz3AsbCpVVO/fT0hiQYsC5DiS3rUwsq3eRowFRSsUC+4BLlVJ7s2wmPrTBksiqUVzR6xp+/v7bPNW76/m3+XvK12xe/m8RaWY4n5Pp6ZxKSKZuZIXcCxsKhqduvGXICyvXORCllANYJyLVi0EfwwXCTbcP5ceJX5OZ6R7PyIrwiEjqt2zH1tVLycjIHi9KKUWqyQVe6Hx5JIaBnZubRYTFgnhkQC7ESfRIYJOIzDHrQAye0LhZC8LKhfPvvDl5qqeUYt7P33F97x5njU9ycjLD776Tu2+/1aM2klNS2fDfLmb88y9pKRdX9sK8sCj2FGsT4nhxUK+SVuWiQMS5Ej23rSxNonsayuSFItWijGMVXTev7rdW2CzcJpVFVFQrV0dLfSwC1Hjl0JXOdOgrpaRnsuVYAgBdrh/EuLGfU7FJBxJS9RFoV+49le1z23tfpo3DwYLX7+Xuu++iWs06/DtnNgnxcVStHs3mY3qDUHvaFDYfPsGon+aw60Qs1cKCORCbwG+vnKJDQ/eV7V7V9XnZlT0QJTaUT3Y3X5W4U1t+/78xWjnA9L16N9imofqFklZzp8kW7rdb4vX3hXegN1VaugeOsGcJ37zxxGne+28fn1zRmmBfH9B4zTkqROsVsunXMmQGVdSXB22UaQCxcmkHlOY+trqHy8Qj17WQMNdiF9IQFpxdD7IVCHZtW86sETFcfFgZj/Pp2KMv29at5OiB/XlqX2w2nnv3M2rUrkt6ehrXDryNux9+Ej9/f2351NQUPlu0lpvGz+C+Ts347+mhzH9gIKF+PlSrmLcFjRcDMfFJjJi7ghfbN6FJBXN9ipMLbQjL02i8NwJvAvNwGvsPReRRpdRPRaiboYzjFxDAZf0GMnPSOCr0vC9PdSOjqjF4xOizn2dNnYyvxoBs27CWMffdQYswb6YN7UvdiHMPxLRMByb8Z3ZiU9O475/l3N24DpdVM+HtihUPo/FecAYEGAO0VkodBRCRisDfgDEghhzpfetQRve/kj6db8E3KDT3ChZkZmayYeVynhs5lPUrl+Ll5U35iEoc2LeH4U++yPCUDW51GkWWZ/Peg1SPCC/IKVwwKKV4ZOFqukRFcGt9/Qp9Q9HhjMbrQU70C9CA2M4YDxcn8HwC3nARU75yFVp3v4ptf/9Ek35D891Oj34DCCsXzvFjxygfUZkjB2MYeNdwgkPDiK5zCXznbkBOJqYQERaiae3iZNnhExxMTOazy9qWtCoXJyLYfApnDkREvgL6AEeVUvo0ncWAp0bgD1ck3sEiMhiYCcwqOrUMFxLX3nEvW/+aQmZa/t1wvX186HxlT/rcdBuD7nuAtcv+JapGTafxsCAyNIgvZi0gMzNvYVUuVD7fsJ27G9cpvJhuhrwheLaQ0LMeyNdAj6JVOHc8nUR/FBgLNAGaAmPPD65oMFhRrU49ytdsyI6FvxVKe+EVIujeqy9TvxmXY7lPBlzB7sPHGfrOBNIzPF+PciGy8uhJDiYm07tm1ZJW5aJFPFwH4skQllJqAVDiC7o9zomulJoKTC1CXcosVq6FVt5KXhZutlZk2n218sIaKrVqRxz6h64XoCxcOQN97DSu5j7X8fkbLzBsyO1MfvkhAgICzspjU/XH+HWrPgzKyPrOiLGvPjCErr2v5/1H7iIwMADbHfdry0+uUp47Pp1K9wdfpXO9GjSoWpErGtcmubl+TUnNYB+UfTfpwdknmO2xc7XlFx9O0MpzYl1sSp7KXxOlH4azipaMUjiyuP7Gp6fz7LL1DA6uzOHl7pGAq1+t10f5BevlmojRuWHlcm51HyGi3ZdXl3mr8iVC3qLxXi8iX2SRjlVKjS0izfKNR08yEbleRLaLSKyIxIlIvIjEFbVyhtKJ5Y8+B1q3aUuLlq35/OOPCkWHM9F+HTmsIwDw9/Fm4vABPNSrA4F+Pvyyags9X/+GY0cKnj2xLJDucPDyqk20r1SBTsFhJa3OxY0INi/vXDeXp9Y0pVSrLFupMx7g+RzIG8C1SqlQpVSIUipYKWVmJw154unnX+Szjz/k6NEjBW5r6YpV9Li8O8FBueeT8PGy06d5PR7t04nvR9zIDW0bcU2X1tw3qD/79ljn8yjrKKW4bc5SjianMrpZ/ZJWx4A4F2HmtpUhLyxPDcgRpdSWItXEcMFTs1Ytrh9wI5988H6B24qNiycsNH/vMI9f05l/Vm+hXeduDOzVnd6dWjD89pvYtf2/AutVmtgZl8Dp1DS+7NYGP08y4RmKFgFstty3MmRAPJ0DWSkiU4BfgLOuNEqpaUWhlOHCJSEhnsgqBU9elJiUhL/FynRPCAgM4o57RtCz7w0kJiSwaO5f3NLncnbtunB6JEuOnKBzZMUyta7gwqbwUtqKyPdAN6CCiMQAzymlviyggnnG0x5ICJAEXMW5nCB9cqskIl+JyFER2ZhF9ryIHBCRta5NG8lNRHqIyDYR2SEiT2SRVxGRf0RkuogEuWT1RGSeq70tIlIqxwsN0LFTZxYvWljgdtLTM/D28tgHxJKIypHUrFOX2+6+n8CgYE6cOF7gNksLSil8PZm0NRQPIuDlk/vmgZONUupmpVSkUspbKRVVEsYDPHfjHaLZ7jyzX0SetKj6NXpf5XeVUs1cm9t6EhGxAx/jTJvbELhZRM7kOx0FjATGAWeSWn2Qpc0GwIeenJeh+Ol3wwDWr1vL+rVr8t2GUoqVa9ZSOcI6eF9+uLR5C3755ZdCbbMk8bXbSc1jamFD0SF4tg6kLPUYC/4K52QA8Or5QqXUAhGJzkd7bYAdSqldACIyGegLbAbsgMO1nbnSkcDZsKhKKfdlyYVAXj0CbRY3guVPWilt1FKbVdRdKy/OQnJpzI+3lU2EAG/39xJfcZ51cJAv77z1JrcOuJ4ff/yBhs1ba9vp36iS/gCZJ5n55xz2xhxgyK03nRWnVqirLX6oz2Na+Wt/uc93HPGtzMKlK2nWojW7T6dl29eg1qXadl7YPIV9n+vfVwIr60OopMUlaeU7Z+lv29Aa+hAwc3/eppU3cP31tdtIzbKI0mYR7jcjUe/G62MRQVf5Wrj35vDgs7r18vqodFjUcFi4zOd0x+tjIhchIpaRjN3KlREKy4Dk9YxHiMjtwEpgtFLq1Hn7qwJZQ7jGAGfiL3wEfAvEAre4ZO8C/4jIYuBPYLxS6rRWUZFhwDCA6Oho5s2b57HSjiL2KU9MTGTxshXuO8rQDZWUmMDKZUvd5LYsP+WoqGp89tlnrF6zliPHjlOunHtEWIsI5uxUGXgFl2P4iFGs2Lr7rFzZ9eHW0ywauizA/aHZrGM9KlepSlpKIvs3rsy275jSP2TTjh2FJt21+6xCd6vK+leI1ErNtfJEH/1Dp1k7/cr+9NByHOxxPfXS0qmSnsHBQOdcUUZXvUFYFa53RrCt2aSVY/VCkwNWvxyrOzshIYGlS5Z43E6OlsICW0msyDcGREtevr5PgZdcdV4C3gbuPK+M7goqAKXUXqBLth1KjReR2TiHy/oC94hIU6WU2y/M5U89FqBVq1aqW7duHiuelJy3BWB5ZdmSxXRo6/5Gbpn3w4JC64Hk40ZevHgJrdq2c5Of6YFkZfWaNdwxZCjNW7Tg9bfeIST03Jt2Yrr+IRuZeZIPPv+ShUuWMeymc1Nd6UER2vL74tK08kmaHsjcia/ywLAhXFohgmqNW2Xb1yBZ76G1b84UrRyKvgcyx6IHcvnnT1Llj2lsiTnMb3sP8m7HFgAc3aBfnNnyoau18oDL9IbR4a8PAZ+vHohFlaVLltCufXuP27F6ucvpjg8OyL8TRr4QQby8PShXduatCktTj580SqkjSqlMV6rcL3AOV51PDFAty+co4GAu7R5USn2llOoLZAAlFmDM4BktmjdnzoJFBAYF0a1Te5Ys9iwXelSVSI4dP1Ho+lRp2oFFc/8u9HZLimMpqZT300cxMJQEF+86kNz40dOCIhKZ5eN1wEZNsRVAXRGpKSI+wEDAMoWuy2PL2/V/ZaA8cMBTnQwlR2BgIG+9+z6vvPEWQ++4jWfHPEl8XM5BDq7teRUHDh1mxeq1hapLVLPOzJ09i03r19CqVmXa169OlyZ1mPJNiTi4FJg98YlEBwfmXtBQPIjTjTfX7ULrgYjIGyISIiLerrzox0XkjAcUSqlXLOp9DywB6olIjIgMBd4QkQ0ish7oDjzkKltFRGa52ssARgCzgS3AD0opiwFZwOlevFFE1rnqPKqUujhiVVwg9OjZi3n/LuHkiRO0b92CaVO+Pxuu5HzsdjuVIipy4FDhfsWBFSqzZOs+GjZpxsKNu/hj6TqatmiNn18xD3UUErvjEqkZYgxIqcKjhYQlraTneDq4fpVS6jERuQ7n8NIAYC4wMadKSqmbNWLt65xS6iDQK8vnWXgYMl4p9TDwsCdlDaWXiIhKfPTZWFYuX85jj4zm2/HjePH1t7m0abNs5f6et5DYuDiu6XFlkeghCP4BAfgHBJCUlEBYePkiOU5RY3ogpQyPvbDKTg/EUwNyZuanF/C9UupkWfJVLkxsmmk5B6KdxLOJaCOm2nO4dg67+ySbKKV1X7Shl+f0zegmOq3az+837K3zblGQoe3wul+fVm3aMP2vufwxZQJ33nQ94z77hKuuvMJZOkPx4utv8fQD9+KVmQJZgvn6Htnq3rx/LWr56SfSm1QL08oT0jJYtM/pGBjd5jKeeewhol95jHcSW7iVHQdUfv4zbTvxnz2F/z3unfO0Nx8kvGUTN/nOWRvw8tP/JH/7bYde1wx9L23Cz1s4kZHKvD/3nV1XcEXtcsSe1DuCbJ60yE3Wqv8I7HHuE+8O/3J5jkBtNZntJWJdJ48T5jq3+Uyl8NLcjxkWxyxSPJ5ELzvPVk8NyAwR2QokA/e7UtoWrUtSKURnPMD6hrYMt22F5bqRvMmtsPrR57WdnLC69/XGw5pIXwdDbr+No0eP8sVX4+nUsQMBAQHMn/cPazdtoVaNatnKa40H5Nl4LNp3iqz9je43Diaiek36jRpFp//9gs2e/SdjZTwArfEAtMYDKDTjcfJ0KqfIIBSvbIvS8mI8AK3xgLynL8iJvBqcvBgPQGs8cpIXNXKB9UA8XYn+BNAeaKWUSscZ1qRvUSpmMADcc9dd+Pv706ZjFyZ8O4nRz7/OwH69GTnmJTIziydJVKN2XfELj+T0jnXFcrzCYEnmKerYAnIvaChGLlIvLBEJAIbjXMMBUAVoZV3DYCgcwsJC+earcbzy0guMeng0d958A5+/8SJxcfFs3La92PSweeU9iVJJ4UCxSyXT0RZW0qoYsnIBRuP1tK80HkgDOrg+xwD/KxKNDAYN1/bpTY3q1bmsUzvsdjuXNqjHlv/0q88LG4fDQcKB7QRXs86/XppwoAjGK8+ZLw1Fi4gg3j65b7ay8715qmltpdQbQDqAUiqZMuVsZrgQqFG9Onv2O5f39O1xOU+/9i7bd+0ptPbjTx5ny/JFJCfGs3nZAhJjTwOwes5MAitH4x2gjwFV2shUECKFFWTCUHh4OIRVhh6tnt5laSLij2tuS0RqkyUviMFQHERHV2f3PmfMzFtvuJbN/+3g5fc/4+v3X8tXe5kZGcyf/AV7Nq7m4I4tpKckE1W3AZcMu5M/Jozn8J4d3DDqaVb/M5OoLtcX5qkUKZkogjEJpEodgme9izI0hOWpAXkO+AOoJiKTgI7A4KJSymDQUbVKFQ4cOpcO98jxE7Rupo+S6wnr5s5k/fw/uPy2+6latxHlKlcl1N+H8se38fAnk9mzeR3fvvI4B3Zspc519QrjFIqcNBwkkkEDW+6pfg3FzUUajVcp9ZeIrAba4exfPaCUunAy73jI6TS926SfRZhsK1dBK/dehd733e5I1yuk8pjrwWJM3CpYo8pHV1rQ3/9Wa1/sFm6cicp90tonMJRjB2NQ3v4opfhr/mIef2gUytufzG2aKMbAX5GRWnl4gDcLJ3/BjaOe4tIO3c7KX/xsCaM7+/D2z86IwqnVroIdW4lPDWfneveV7ysO6QMjArT3P6mVZ1oMhQVW0i/6259s8f1rWMIp2omdAeXdAznuSNC7NFvlh5S0RK3cyjvdKvIxgN3it2C1HsPhUCSkuXvZ+Vj81ny99PIiDqCdR8SzSMZlaO7KUy8swZncqaVS6jcgQER0QRANhiLDPyCApORkwJlUyuFwkJ6uD1GeG7s3ryMzI4PG7bvmWC4gui32oAikDHhh7SeZGJIpr1mMaigFCCix5bqViGoilUXkWhG5xhVP0CM81fYTnOtAzoQmiceZMdBgKDb8/f1JTnFOvdlsNgbfciNfTJiUr7YST5+iQmRUrtnfxGYnoHoLUo/ow7mXJv7lJF0oX2gRUg2FjTh7F7ltxTyJLiJ3AcuB64H+wFIROT/FhhZP77W2SqnhuFafuxJAlf5XMsMFhX9AAIlJ54aM7rrtZr6b+guJidbDSFbE7NxGxajqHpVVmWnYvIs9f12ecM59ZBJV/Hn2DHlBxLOteHkUaK6UGqyUugNoCTzuSUVPDUi6K0/5GS+siuSQmdVgKAoSExII8D8XGbd6VFVaN2/K73PmZiu3cdd+TsQm5NjWxiXzuLSDPmHS+aiMNMSrdOfViCODELyQMuQCerGhRFB2r9y34jcgMThHlc4QT/aMsJZ46oX1AfAzECEiL+Ps5jydFw0NhoKyf/9+qkdVzSbr1qk9i5Ys5/palwPw3V//8sjHk8hwOKgYFkKNVr8xePSzbFu3ismfvoOvnz/ePj5sXbmEUe985dFxHRmppB79D+9yUYjYSY5ZS2CdTngFlo4ovUlksorThJtBgdKPR3McxW5ADgDLRGQ6zk5CX2C5iDwMoJR6x6pirgZEnNlNdgOPAZfjPLt+SqkthaC4weAxMfv30bZRnWyyLu3bcs/DT8Ctl7N2+14e+/R7/nr3KepXr8LWfQcZ8+c2Pnj6QY4fOUSfW4dSpUZNFv85k93/bSH2xDEiomrketzghleRtHMxx+d9RGZKHP5VmxA79WfKtRmEM6VNyXGcNGZyhPoE0QJ96ltDKcITA1L8PZCdru0M011/c105m6sBUUo5RORtpVR7QB/y9CIhNlUfvE/56H277ZLHHORKkaKJsOrvrfeqsXJRtIwabPFmU9j3a15yr1u5OuvcPg/G7Cfi2mtJDDiX//ySdpex98AhHp2xlu8nfssr73xA9IAbSQGi28F3/TO44rLueKsMXn7oHmw2GyP792DCp3V4c9Qt/DX9R2pUizrb3reNI/H1j6Nm4yy9i8aRNK85MJsuJ/bv4oen7uDv7Q9anlvzznrjlNGmv1Ze36G/vzr+80a2z5lKkaIcLDuVzGbiuZRgWhB2dn9ihoNVJ9znhXwsrnWlZnpH3viFv2vlgVeHaeUJwdFaOUC8hQu81b3nAJIz3O8jK6cHR3reR9SLP9SklEoXXaXUC/mt6+kQ1p8icgMwTanS5VltuHjYv38/1apnn/j28vLi0cceJy4uHh8fX2rVzt5D8fb2ZtL3kzl27Ci2LKuA775jEKmpaVx9/U38Pf0noqro14tYUb5aLTLSUklLTsTHv+iTNp3MTGdDeiLr0xPZlO5cn5GBwgsbfalU5Mc3FA4euekWUw9ERN5TSj0oIjPQRNBXSl2bWxueGpCHgUAgQ0RScA5jKaVUSF4UNhjyi1KK/fv3ExVVzW3fyAce5NSp03z26cfUb9DAbX9UVBRRUVFu8hHD7iQ1LY2rr7uJv6f/SGTlvD2IA0LDSTx9skgNSEJyCl8kHGJ1WjyNvQNp5h3IbYGVCLN58e+J5CI7rqEI8DQjYfHNgXzr+vtWfhvwdCV62YgiZ7hgOXr0KAEBAQQF6UN0zJ83l7Zt2+Hvn7f85aNH3Etaaio9+9/CM48+RMqpClDFM1fYsMhqbF+xgLTkJCLrNKR2y455OrYVSim27jvIzCXrGP/7AqoA75Wrg28pHP4w5JFS1ANRSq1y/bsSSFbKGdrC5XHrkduhpyvRW2i22iIm5KeheNizezfR0dFu8vT0dCaMH89TTzzGdTfo5xZy48nRD/DAvXfz3U/TWPn2XaScPExGSu5rS5r1upl1f07j+P6d/PTKQ5w6HJOv42dlR8wROgx/kWuefJf9R0/w0YN3cHdQpDEeFwTi4Ur0Yp9En0P2KSF/4G9PKnpqAD4BWgAbXJ8vBdYB5UXkXqXUnx62YzDki927d1OzZs1ssuPHjtHjyiuoGlWVr7/9jlatW+e7/SGDBjJk0EAuH7cRiGHlW0NpcOsYQms2tqxTu+1lNOt6FQCfDutDugdGJyd+W7yG+979mmdv78ddfbqdnTD+gRkFatdQSjiTUCrXcsVuQPyUUmcXTimlElxJBHPFUwOyBxiqlNoEICINca5efAmYBhgDYihSdu/ZQ81atbLJ9u7dS2BQINN/m0U+0nFr8fILwC+8MrX73s/G8c8QVrspUV0HQM3OlnWUw0Hc8SMEhVfM93E/fP89xn40iakvjqJNg9r5bsdQmvE0mGKxG5BEEWmhlFrtPLy0BDyaYPPUgNQ/YzwAlFKbRaS5UmpXbrGELiR2ndRf08hg/XBh5SC9+22qxj0RnImAEjTuiFZBTgO99W8zVu66Vu69Gs9hwDqCamFis7h/zncF3rNrFx06dMgm8/I6NyE5ZdNRbTv1KugnuFtG6hcBjuntS/Kudbz3xDASR9zM7Knf8/OE19hwaBm3P+6ehLN6qB97d24nrFw5+rSom23fA7/qvd77n+c2u3bJQt7/4EPWfPcRkRXd9er5bC9tO91PxGnlS+w2age6LyqsH6X3eYl65Qut3Cras+2wfglYWECsvh0gKMA9OjDAvjh9hGClICXT/fhWEX+9LF7s/ax2lBSlcyHhg8CPInLQ9TkSuMmTip5e3W0i8qmIdHVtnwD/iYgvriyFBkNRskszhOXl7U1GRv6i8XpCYFAw198xjHe/m8HiWT9j5cG+fMEcUpKS+H7sh3k+xqnjx3j7iZE8/OoHWuNhuJDwbA4kP2kUCoJSagVQH7gPuB9okGWCPUc8NSCDgR04LdVDwC6XLJ2SXopruCiIiYlxc8X1snuRmaFffFeYrFj4D1F16lkuYlu5aB5tu17OtG/GsWy+R3OPZ/nyzRe4rO8AmnfoUhiqGkozgmfReD0Y1RGRHiKyTUR2iMgTBVLLOd/xOM48TxuAaBHp40ldjwyIKwf6J8ATSql+Sqm3lFJJSilH1skXg6GoOHHiBBUrZp9jOHbsKF7eResImJyYwNfvv8bNDz1jWebg/r3cPGwko559hW8/eTdP7W9es4Irr/NotMBQ5vEwJ3puKQacbrYf48zR1BC42TUvnV/GA2k4U3aAM7ii+3itBk/deK8F1uJMa4uINBORX/OspsGQD1JSUkhLSyM4OPtypNl//EGr1kWb1+yHcR/TtE1Hajdurt1/KGYfRw8eoGqNmoSW04/zW5GelsrxwweJrBZdCJoaygKF5MbbBtihlNqllEoDJuMMgJhfaiul3sA1HeHqMHg0jubpENZzOJU+7TrAWiA6j0oaDPni+PHjlC9f3m0Iqftll/HD5O9JTy+aabjjhw8x7evPGfKgfoTgyP49PHhLX+59/Dm8vL1ZOu9vAoM8X3Pr5e1DaLnyHI7ZV1gqG0o7HiWUAuB6EVmZZRuWpZWqZA+3HuOS5Zc0EfHnXLqO2kCqJxU97f9nKKViLyaPK0Pp4fjx41SoUCGbbNvWrQy/9x4++PgTvC2CTRaUxIQ4IqtHM+rGXlzasTs16l9KlejaBASHsHPjWmZO+JTBIx6ma49rGHPPbcSeOslzH1h4NGkQEWrUrU/M7h1Uja6VewVDmUaJeJTrw1VmmlLKatxU10hBHNmfwzm6VE1EJgEdcc5x54qnBmSjiNwC2EWkLjAKWJwPRcs0NcL0YTJCffXxbZIsIoRGBOgvu11E25aV66Ijj3EtxcItN9NqEUU+F1fkKSGOxSEk85x75/49u4ioWAHJTCMo7jDp6enceetNvPDICAZf3R7i9nNdA/dYVwA/bzmmlX++aLdW3rZ2eaqmZ7L9cBwERXL/579w8lAMkyZO5b/5K0ieOo2MpDiCoupR8eoR/LwhhQ9f70Bogy5UvuJ+Xp55EHB6Q9asox/Sah55LhzLyYP7uLxVI+pGBuFYf1JbPrzXAK38dKUmWnnIL5NpMdh9yO3ND5Zqy3da+L1WvrPpQK28vl2fd8TrlPVKfOWr75nV8tO78e7F+Xtwa8fiftFF7gVQpSnvnVLWv7VsxXItEwNkDQoXxZmbLo+40nWUw5nOth1O4/SAUuq4J/U9NSAjgTE4uzXfA7NxLiI0GIqcSd9Ppl/fc4FBP/zyG6pVjWTIwBuK5fjhkVFUbuc+xHxs7d/sn/U51fqMJjhaP0eSEykpKRw6eIDomqb3cbFQSOtdVwB1RaQmzmRQA4Fb8qWPM13HCKXUD8DMvNb3NJhiEk4DMiavBzAYCkLMgQMsWLSIL8d+BsChI0d546MvWDRjiqVbbXFwbO3f7PvjC2oNfAW/Cp7lVj+ffxfMp9GlTYpsCM5QulB41qnPrYhSKkNERuB8kbcDX2Vd6J0P/hKRR4ApQGKW4+i7xFnI0YBYxYnPcoBc48UbDAXhy/Ffc9OAAWej8H43bQZ9e15JnZq5ZxIsKo6vncO+P76gwZ1vgF/lfLVx4sRxXnvpBYbec18ha2cozXiUTsmTIkrNAmYVWCEnd7qOev958ly7xrl5Yb0FvI0zpW0y8IVrSwA25ta4iPiJyHIRWScim0TkBZc8XET+EpHtrr/lLOprF8uISBUR+UdEpotIkEtWT0TmichaEdkiImNz089Q+tm27T86tG939vOPM37npmv1oT2Kg9hda9k761Ma3PkGARH5M2KHDx2iX8+r6HbFldx066BC1tBQmnGo3LcSyNjXEOe6knU4l2t8CDTypGKOPRCl1HwAEXlJKZV1qewMEVngQfupwGWu6I7ewCIR+R3nhM0cpdRrLsPwBM6VkGfJsljmSpyTRitE5Fel1Gack/gjcVrIQcBnwAfAu0qp6a76l3qgn6GUU6FCBU6cOAHAyZOn2LZjF13a5z/qbkFIPh7Djsn/o85NT+XbeAA899Tj9OjVhzHP5TuTqKEMopR1XLvzyxUzE4A4nM9QgJtdshtzq+jpJHpFEamllNoF4Jq8yTX0qCv97ZmV6t6uTeFc9NIti/LzOM+AkGWxjOuYZxbLbMY57udwbWcGwiNxGpozx96AocxTsWIFjh13OoQEBPiTmpaO3e5JVrfCJSMpjm3fPk3UlUMIrd0i3+2c2r2Z/5Yu4d2PPi1E7QxlBU+GsEqgB1JPKdU0y+e5IrLOk4qeGpCHgHkissv1ORoYZl38HK6exCqgDvCxUmqZiFRSSh0CUEodEpEITVXdYpm2rv8/wpmOMZZz3gfvAv+IyGKc4eXHK6VOa/QZdkb36Oho5s2b58lpAKAy9QvWjliEaLZy2dttMfeblJjIiqVL3ORWUXGtbrTzI9meIa8OjVaRcnP6DSQmJrBkifs5WE13W5+DU9vGlzYlPT2dxctXAvD6668zf+NuNyOSxgFtOwHx+vVQVwbqr0Z4Qiw2RxrRCbuyyW+PPETm04/g6x9AhSrp2FypSVUOPyEvic/2WQGHMtKo+N577N2qeb9RFdxlQOY+fZ6RE1sXauWBYRXY3+cON/nVtfQh6X/YpL9GlY7+pJUfq2w172Pt1JC2e4VWbrcYRE9LTmT/+mVu8nSLUfcMi9+a1T0MsK+YI/Uq8v4bLCbWiEg7pdRSABFpC/zrSUVPvbD+cK3/qO8SbVVKebRSUSmVCTQTkTDgZxGxztCTHcvFMkqpvUC26HNKqfEiMhvogbOnco+IND1fT6XUWGAsQKtWrVS3bt08VAfSTupdrTMtQlXHpuoD/fnZLYLyLVtKk1Zt3eTBFutMrB7kNqU/boojb15LvhY/sJx82ZcvW0q7du3d5Fa/Y6tzsGekANC77/XcPXQIHVq3JObAAa6//np2rFpEyHlhTfaKPpLt1Lk7tfKYk/qH8qA61fE7vIWUyudyqx87uJ+nn36GEW98ytLfp7N7y3oeeu9rwipEkK4JOX6Gcv7ZvatWL5zDhLfeZtuqJXh5uf/0xKGPLBxrkdvn6zX6+7F12nY613dfF/PTraO15Rcf01+L0fe20sprPfaUVp5TqPJ9QfocJyEW9/b65Yvp2KqZm/xwpj7d8LFE/bXzt0h5ANCwsj68fVFSSHPohU1b4HYRORMSoTqwRUQ24BxI0i84IncvrLNJRlwPYrduTdYyOaGUOi0i83A+4I+ISKSr9xEJ6JI55HmxjFLqIPAV8JWIbAQa4+z9GMogcXFxLF+5kimTvgHg9bfe5s5BA92MR1GzYelCGrftTP0W7anXvB2/jnuf52/rTdWadel3/2NEN7D8fZ0lPT2Nie++wq0PPqU1HoaLg0JaSFjY9Mhvxdzu5PEi0o2cA2t9CWhXUYlIRSDdZTz8gSuA14FfgTuA11x/p2uq52mxjIj0wDkxny4ilYHyrnqGMorDoVBKERgYyO49e5k67Rc2LZ5T7HpsXbWUBq2dyaxEhL53P0jTTpex778tfPDQEK669W6uunUYNot0pZmZmXzw5EgqV4+mdberilN1QynC0yGs4jYfrhGdfJGbAQnF+QafkwHRx4pwEglMcM2D2IAflFK/icgS4AcRGQrsAwaA0z0XGKeU6pWPxTJXAe+LSIrr86NKqcO5nJ+hFBMWFoq3lxfHT5xg85bNNGlyKeXDtR7fRcr2DavoNWR4Nll0gyZEN2jCJS3bM+7ZB/lv9TLueul9AoKyD4s4HA4+e/4REuPjeOKD8SW6+NFQwigPPaxKYAwrv+TmxhtdkMaVUuvR9E6UUieAyzXyg0CvLJ89XiyjlHoYeDjfyhpKJTVrRrN79x5at2rFmrVryczMLFYvrNgTx0iIjSUyuo52f/nIKEZ/+j0/vPc/Xr2zH6Pem0DFKs6R18T4OD58ahTJSQk8+eE3+Pjqx+8NFw+exK8rQ/bD43DuBkOJUDM6mt179hBRsSIVK1Rk09b/ivX4J48cIqJqNcvhKQAvL29ueeQFOl07kE8fv4f0tFQcDgfPDx1A+cpVePqz7/AL0E+EGy4eFM51ILltZcmAmNm8PGBLTdTKDym9N0dcmt4bymYxInjmBjufZIuovlaLkvws3RP1FWJT9e0HWAzYBntZ3+KiFHaHu7uzsvDQybR4hxFv59t6WkYmePng8PajXYcOLNqwnYbt3bMop57SR3VtWUM/5NWzYSWtPCrEj2PHbFQrHwiAo1wg3jaoW15vAOqUO9eruObFJxm6ZyPrJ3/EZVdciZ9d+PjDD9yGrfYla5si2FcfE8uqv9Wvgf4cdq3fxy7faDf5gCVfa8t3raBfdFw+WT8CnDxnklbu0/terRygikW4rxSr0XERlN29UoS3vnwlC2+uUxml6x3ZIy+sMmRBStfVNRiy4HA4WLx4MR07dQKgffv2zP3nn2L1UklNTUE5PPPez8zMJCEhAW8fH8aPG8stQ4aaOQ/DWRQKhwdbWeqDeJrSVkRkkIg86/pcXUSKNpeo4aJn8+bNhIWFUaVKFQD69OnDhg0bmDWrsGLI5c534z7hymuu96jsrp07WLNqFTVr1mLd2jX0vSHXSBCGiwylPNhKWsk84GkP5BOcCddvdn2OxxmnymAoMhYuXEinzudWT1esWJH27dtz8mSuUaYLjb07t9O+q5u/h5a6l9QjNCyUV156nh9/mUFgUFDulQwXDwoyHblvF+IQVlul1HAgBUApdQrQpyUzGAqJP//8k25du7rJi3NY6PjRIyye95dHZU+cOE5SUhI/TPuVOnUvKWLNDGUN5zqQ3IewypD98HgSPd21luNM0vWKlNqwLoYLgUOHDrFs6VImTpx4VpaRkcGSJUu48847i0WH9LQ04k6fYvyH77B5wzpEhK5X9+bKa29w88rau2cPjzw4kuv730ijS00gaIOestS78ARPDcgHwM9AhIi8DPQHni4yrQwXPVMmT6bPNdcQGBh4Vvbdd99RrVo12nfoUCw6ePv4cO8jY/j0zf8RGlaO5m078NOEcXw39mPqNW7C8SOH6d3jao4fP8a3479i2H33c/+oB4tFN0PZxKN1IGXIyHgaTHGSiKzCufhPgH5KqS1FqlkpZLPSBQ2GihbBEUMtXAutAr9lOBRHEt1dYGuX89WXt3DvtQoc4I8+mrBPgL59q5td5bAmIq94aVRVSjFp0iTeeffdbLLXX3uNLz79GFuGexzPS+yntO1HNda7us7fG6uV74tNxp7pYF+s09f28tvuI7xmfT579iEuvbQJP8yaw9zZszhy+CAVKlbit1mzsNlsvD31b8pXimTtiXRwXeemlfRzICsPx2nlLSL1Mb6OJ+m/t/rl9QsT9wgE+bh/R8ct3HW3Hdf7Fbd1OS+cz77Z+si6tcpZZ3jwbuAeJBQg0MdfK5f0FLwPuz9iHIH6oJlpYdW0ch9b6RkoUQrSPUgI4omRKS3kFkwxa5jZo8D3Wfd5kjPXYMgra9euJSEhgY4dO56VKaXYvXs3HTu4R/otapp36s5XP/3GjT26csudw7isR++z+2q2v6LY9TGUTZzrvC6slei59UBW4TwfwRni95Tr/zCcMaxqFqVyhouTqdOmMWDAgGzzDDabDS8vLzIyMvD2tliVVoSkpaZQPbqWWddhKADKwyGssmNCchyLUErVVErVwhnQ8BqlVAWlVHmgDzCtOBQ0XFwopfj555+57vrsay8+++wzqlXLOaRIURISFsbJ48f4bvwXZeoHbig9KE/deEta0Tzg6a+xtSuwIQBKqd8Bd/9Kg6GArF+/HofDQbNmzc7Kxo0bx/vvvces338vkXS2AFHVo5k4408+eetVdv63rUR0MJR9HErlupWl9xNPvbCOi8jTwEScBnIQcKLItDJclDgcDn786Seuu+66bENFX375JV+MG0eNGjVAM4FeXFSJqo7NZiPABEY05AMFpHuQUMqDIqUGTw3IzcBzOF15ARZwblW6wVAoXHPttaxfv57fNaFKSsND++vPPqRew8ZERuk9fgyGnHAOYXkyiV52LIinbrwngQeKWJdST+VA/eU6kmSRj9kiKm6on34YZl+Gg/9OuOentsrrXC1YHwzgVIo+CnCgxeRzuoU7sM4VFHL5ETgysCW5u9RmWrhfHk0+p2tSahofffkNEbUbkJpxTiebzUZiciqpGQ7SHfpzCLXpvxv/9HitPDpM7z46d/cJIh2KQ3Ep2eThSUf4+tMP+PXvBQT5nPv+ElL13z1AosV1rRSo/97WHdbr6uulv1/+jE3RysOANI27aMUA/TVqVjlQK/fZr89UnRqn7wU64k9r5QCZwXoXeLytcqTs0h8jIG8JxdJK2ev8RbkORETmopnbUUpdVugaGS5aQkJCiT3tbnyaNGnKqpUraNNWv5agqHE4HDzx0EhGjn6catVrlIgOhrKPVboGXbmygqdDWI9k+d8PuAGwfvUyGPJBaFgYp066T611u+wyvps4kfuGjyhWfVKTEln553QW/TyRmlUqc8dd9xTr8Q0XFkop0jNzX9h4wSwkPINSatV5on9FZH4R6GO4iLm0WQtWr1zBzbcPOStLT09nzerVHDx4oFCPlZgQz7ZNG4ioXIWKlSqTEB/HwZj9rF29maAa5Zj8+ZesnzebOs3bct3IMTx6az+zBsRQYDwyDmXHfng8hJV1RboNaAlULhKNDBct7Tt1YezHH2STvf7qK6xetYqffv6lUI+1ZMFcnho5jPIVIzh6+BBBQcFERlXDu1wl2t9xC5G16nH1HSMpV9kZzsMYD0NB8XQIq/QEX8kdT4ewsq5IzwB2A0OLSinDxUm58HCOHj5ESnIyIT7Oid2///qTV19/k8qVIwv1WG06dMHLy5tf5i3Hx9f3rIGYu/sEYad30HVA51xaMBjyjmfDU2WnC+KpAWmglMrm8iEi+gh8BkM+efvVl7ht6N34+Ts9pE6fOsWunTtp2apVkRxPKYXNbje9C0Ox4HEwxTLUBfHUgCwGWpwnW6KRXdBYffeVA/Wupact3GmTM/R3iK/dRpTGvbSiv/5rSkjTtx9vKdeKLd2TvY/v1MuBlPBa+sZsdhx+Ie5y0bsEn0x2uoQmxMcxfepP/LF8IyeTM1DKiwVLV9CoSTOSlRfJqc5rFmzhWpzkF66VB8Xt18qPbt1M69ataBCRPWJukE9FdqzdQ6t62SPLBli4UkcEWb9HhVjo6mPX17H63uqW17scbzvu7vINzmECXYDoFIv7LjZVf9ykiGZaeaMJ32nl9rhDWjmAw6H3uVFKr1O6lz+HyrvnVangpS+/87Tetbienz7SsBO9+3JRoTyNhVUMuhQWuUXjrQxUBfxFpDnn4oSHACW/sstQIlgajwKwe/t/1KhVm+DQ0LOyjevWcGnTZoV+LHDm+khO0j+ADYaiwrNovAUzISIyAHgeaAC0UUqtLFCDOZBbD+RqYDAQBbyTRR4PPFVEOhkuQnbv3E7NOtnTwG7asJ6re11ToHbnLlrK1JmzGTzwelo1db7RZmRksGbNanbt3o1SygxhGYoFpcDhyUr0gndBNgLXA58XuKVcyNGAKKUmABNE5Aal1NSiVsZw8bJ7+zaizzMgZ+Yo8svBgwe5Yehwhg8ZxE13P0D58DDS0tPZuWcfbdu1Z968+cZ4GIoNz2NhFcyCnEn2Vxz3dm5DWIOUUhOBaBF5+Pz9Sql3NNUMhjyze8d/9LlhYDZZ1ahqHNi/L99t+vr4YLfbeemJh3jukZEsWLKC8HJh1K1VA++qDQqqssGQZ/KQUOp6Efkii3isUmps0WiVf3Ibwjozy6TLzVmW5noMpZzd2/+jZt3sPZAqUdXYs0s/ke8J4eXLk5aWTlx8AiHBQTSqX5dKFSsAYOFPYDAUGUopz4IpOotMU0o9Y1VGRP5GvxZvjFJqen51zCu5DWGdGUP7Wyn1b9Z9ItJRU8VgyDNJiQkcPXyImL27eejOWxk4+G769b2WiePHcc11/fPdrojQrUMbetx8J80bN+SLiVP49ZvP6XFZl0LU3mDwHE8MiIdZC0tFLmVP3Xg/xN1lVye7oPHV+UZi3RUL9dW7cVqNg/p52WhQwT06qbdD/758OEM/P6CLxApgNSS6Pz5dK7+kXHWt3FtlYI89qG8MAZu7Xg70B195IJYd61dRKboOM//6h6hGzfn8g7exeXuDzc4twx/haOI5/cL99dFbrX6XX/30G9OnTWXO33/S7bLLeWPcd7S99lZCMvVun1V9FXttiqq+57u26l1da5WziiYLW0/oXUhPJuuvd1SI3r1345EErTzIR//zzVSQoIkEvOFoorZ8nXC9Q+Xu0/povxP3ntbKdx2zXsDQu5HeFfnSCP2xUzMVu065H39+rP6a1rI4h+SQUK0cQB8TuehQeBjOvQyN7eSYkVBE2ovIaKCiiDycZXseKJnUcIYSx9p45I/92zZR/ZJG7Nq4hrZX9SU1OYkuV/bkwL69ZGbqH9yeIiLs27uHP2bNpHyFCox57oVC0tpgyBtKQVqGI9etoJPoInKdiMQA7YGZIjK7UE5AQ249EB+c8x9eQHAWeRyQ/7EFgyELR/bvZtfG1Rw7sA9vX1/CK1elYqVIKkRUYv/undSsWy9f7WZmZvLEI6NZvmwJC5euJLJKlULW3GDwnDzOgRTkOD9zLvlfkZLbHMh8YL6IfK2U2lscChkuPvrdM5rNLdoSf/IEB3f9R61GzQC4ok8//vfYKN7/5keCgjWr23Ph119+YeXyZUyfOZuQUOuhDIOhuPDMgJSdMawch7CykCQib4rILBH558zm6UFExC4ia0TkN9fn50XkgIisdW29LOr1EJFtIrJDRJ7IIq/i0mG6iAS5ZPVEZJ6rvS0iUupc3gx6jh+KoVK1mnS9/lZ2bVpLrcbNAbjjvgfZ9d8Wdm/flq92d+zYzmVXXGmMh6FUcGYOJLetlCVRzBFPJ9EnAVOAPsC9wB3AsTwc5wFgC84QKGd4Vyn1llUFEbEDHwNXAjHAChH5VSm1GRgFjARqAYOAz4APXG1Od9V3D6RjKJVMfvt59v23iYpVq3Pq6BGuHOgM9Lx62b9kZjo4fuRwvtrdu3cPzVq0LkxVDYZ8c2YOJDfKUkIpT3sg5ZVSXwLpSqn5Sqk7gXaeVBSRKKA3MC6PurUBdiildiml0oDJQF/XPjvOsPkOzsXnisRpaABQSm3I4/EMJYBSigM7t/Hi5L/pP/IpuvS7maq1nXMeXa7syZjX3+ezt1/JV7srli2nQaNGha2ywZAvlFJkOHLfypD98LgHcsbv8JCI9AYO4oyP5QnvAY+RfRIeYISI3A6sBEYrpc5Phl0VyBpKNQY4kxT7I+BbIBa4xSV7F/hHRBYDfwLjlVKnPdTRI7wt3HitAgYkWPRFa4XoHdiO4MA7w91NMdmmdxX19dK375+pfy+wcu/1svCnS1YWO0Kq4e/Qu3ji2IstyT2veUpARU1haF8uE18vO4M7N0K6NIbb+wGQmO4gOSmJt559jFtuH0ylIGfE45QM/Tl425zZC19/9RWWL1tKenoGGRkZtGnTRuu+nIw+gnKKQ5GphFOO7PtDfPTXoqLd+tdeI1nfc9oeos+rbpXtNNRXr6u/t/7O27ZPab/r9lHn/wSdnLKIGm0VvXfTgTitfGRn6yCbv27WX4v9Fm65UUqRrolrXi1U7w6caqFrTJzeZRogNFDfVlHhqRtvWeqBiCcTNiLSB1gIVMO5/iMEeF4pNcODer2UUveLSDfgEaVUHxGpBBzHeU1fAiJdvZqsdQcAVyul7nJ9vg1nZMmRORyvCtADZ0+lHtBUKZV6XplhwDCA6OjoluPHj8/1/M/gSSC0bOUtrq2FHSIhMZGgQHd/dqs1FFZfnVXYeavyVutDvCz6p7YcghAkJCYSpFmr4bDpH4JxcXEcPXKYOnXrZpNnKkApNm5YT8PGl2KzOZWxWeiakZ7Ont27sdvtVIyIQBB8/Xzx9tYf1wqlIDkpEf+A7KG+bVYHzuGWsGXqjWyKVSqdPD43rFRKSU7E28/9PvKxuPGsDFeqxY4Tifp1SRHB1qHtT1usffG2W4S8z0zF5uv+gLeM72Rxc3vZrAdZ/CxC9FvRvXv3VUqpfCeniajdUN34xuRcy/3z6fNsmfNzC6XUmvweq7jwNCf6b65/Y4HuACLyoAdVOwLXuibJ/YAQEZmolBp0poAr3stvmroxOA3WGaJw9nxy0vMg8BXwlYhsBBrjzKaYtcxYYCxAq1atVLdu3Tw4DSfxSfq3JcseiGYxF0CYxTNtydKldGjV3E1u1QNJsbAU8an64+a1B1IpQH97WPY+gMXLV9KpaX03eZJFD+SF558jMSGB/rfclk2emO7A4XAwoH9/5i5bTYWKzvr+FlbtkVHD8fXz47U33jxrbMDamFoZ8ZRMxcaVy2jcqm02uVUPJKfYRgEndmjl233y1gOxwrIHsmY5VRu5P+eqh+hvPKseiNVCwqnL9TlWRra27oEss+iBVA7V39tRsTsIrN3UTe5tYRCsXtYqBFgvF2wUmXfPvoKgFKR58CXn9UW1JMmbCc6OW3DF81FKPamUilJKRQMDgX+UUoNEJGt+0utwhh8+nxVAXRGpKSI+rvq/Wh3L5bHl7fq/MlAeOODx2RiKnWk//cT3kyYy7L7h2v07/ttGufDws8bDivT0dGb+9hsjRj2QzXgYDKUJRe4eWJmOgmYDKV48nQPRUZBYwW+ISDOcnfY9wD1wdghqnFKql1IqQ0RGALNxTpp/pZTalEObVwHvi8iZ16ZHlVL5c98xFDlz/v6Lxx99hJ+m/0p0zZraMsuXLKZNu/a5tpWYkEB6Rjpr16ymenV9+BWDoaRR6sJbB1IQA5Kns1RKzQPmuf6/zaLMQaBXls+zgFketv8wHvSKDKWDP2fPJjExgRH33UPr1m3p1acP3S67PFuZZUv+pWOXrrm2FVauHL/+NpNbbrqRvXv2MHzkKNMTMZRKMj1IeF6GRrByjYUVLyJxmi0eMHEhDPnm9TffYvf+Azzx1DNM/m4i03/JHnkhZv8+FvzzN5df1dOj9po2a87sOXOZ/svP1K0ZzaCbB7Ji+fKiUN1gyBdKKc9iYZUhC5JbKBO9399Fio/K0MpTLC5jeGasVm5L0kdFBUDcbbqPhaeKzs0RoFqwXp8kCxfYDIsb1sIHgHT8CEE/wSrKgaS5n59vkPs8xt79e3n20QcZeVt//jd6GLaj56bCPnn9Xe4bdheNo8qTNRJugtJfi5RMRYXIqvz29zwOHTzIkFsHsn7TJtq1a6stn24xu17Oy4FdnH+z4nVUPyGeGRqplQOkV6ijldfSXB9nBf013evQr6Tfdlyf093LJoT7uU/62y3ctkJ99Q4CNcP0E9xvX+PuJHHmuFYMa1NNKw/y0X+fK5ftolmlQDe5lWNKOc35AsRZOJSUBArr31pWHGVoFqQgQ1iGixQr45FXBg8ezAODBzL89gHZ5Eopfpw6jV3btuSr3dDQUHbt3EGP3n0KQ02DoVDwfA6kGJQpJMxAsaFEWLduHcdPnODeW6932yciRNeowYGDeXei27H9P+658w7ate9I+fIVCkNVg6HQ8MgLyxgQgyFnvp04kdsGDcJudx962H/wCMeOH6NmdLTH7aWkpDDm0dFce/UVtOvQkbETvi1EbQ2GgnOmB5K7ASk7FsQMYRlKhN27djFkyBA3+eFjJxg25hUG3XIzISGeL/SaNGE8W7dsZuGK1abnYSiVKNRFG0zRYChUQsPCiI3N7mSwfut2mve5lZaN6/O/F573uK20tDQ++fB9nn7hJWM8DKUXBcqhct/Kjv0wPRBDyRAWFsap06ezyTbv2E3n1s353+j7SPe1jqt0Pj9O+Z46derSvGW+wxQZDEWOwrMwJcaAXKCkicXlsvjCdVFpATJDq1q0sxfJdA9UF+fQxzCycr+0n9ZPPgf5urtFAmDTn9eBNP1DPAFvqtritfuU3ZvMEHfXVsnIFtOSsOAgYk+eIHn5n+f0O7yDkzF7SV7+J17XNtC2n9X99vjxY3z24QdMmvA1P/z0E0Ga4HheFp6lPugDAtrjjiGZ6djjsgcxyAwsry3vdXS7/gBAepXGWrnVfeGw+H4qW8Qkq+6nvy8WH3AQYdd4yqXozznTJ0wr97Zwyw20uKjee1dq5QAB5fTBuyVF7xpvc2QQnHzUXR4QoS1vFectIV0f56uk8Gx+o+xYEDOEZcgzVsYjL4SXK8fh8xJFlQvyJ+ZELA4PVuvu3LGdbu1ak5AQz9+LltC+fe4hTwyGkkQpRWaGI9dNlZ6lK7liDIihROjTuxc///Ir2w8dPyu7tHplIkKDuOrFL+l2+RVs2KiLselkxLC7ePTJMbz29ntUjfI0NY3BULIohwdb2emAGANiKBlqRtfg4QdH8dzkv87KvL3sTBl9CyN7dSA9PZ1Dhw5Z1k9LTaVxE/dw3wXlyLHjOFyvgBu2bOPV9z8lNq7gPS6DAeXsheS2mSEsg8EDDh06zCWR2b2mwgL96dumESEhoWRk6MfHATp3686CeXMLTZe4uDieeuZZGnfpwfrNW7nxrhFcNeB2Vq/fSPPL+jB34b+FdizDxYvDoXLdTA/EYPCAxUuX0qlBtHbf9df144233yE9XZ/Jrkv3y5g5/RdSUgoeVmXjpk1ERNXg+ImTfP3Bm1SrWoWrunfm76kTeeuFp6gVXZ0Zv/+Ze0MGQw4opXBkOHLdypIFMV5YhhLjpgH9+ernSVx2aW238OtDhwzml+nTCS1fkYCAAMLCwggLDSUoNAwvb28iIiI4eOAAXdu2YsHyVQR55z+/9ZGjxwCw2+3c++jTPDXmaebMmc9bH39BXHwCV3XvzEtjHi/QuRoM4NkiwTJkP4wByQt+ice0cqt0rbGh+kRJVjFLHWIj3h7kJrfK6h2bqndRDPfRP0yVXZ/eM0H0UVcDvfV38mlCCfWycBVRDiRdEyVWc+w7B93CiqVL6PL6D/zvqUe5slvnszmvHSqTmT//hMPhID4+gdOxsWzavJlPv/iKhYsW4e3tjZeXF/v27uG/Ncvp1LWbVh1b8mmtPCbznMts/Q6X89p7H7Nl0wb+XbGGbZs3kq6ER59vR/0GDRERAjMTtO0crdRMfx0gaxDhbIRbGDvJ0LvZ+qbo3X5T/cpZH1vjypNmUd5h4QIbQZxWLrH61M4qRO9iC6C89S7hDp9wfQXbPhwB7voGpOt10kWxBgjyt05pWxIoT9aBlKE5EGNADHnG0njkkZCQYL755F1qtejI3Q89ziW1ohn77hvUrHEu9LfNZsPPz5dnR/+PWb//gc1uo3379nTu1JFPP/uc/jfcQOfOnQv8kxtwqzPHWZivHR8fbwbfObSALRoM2VHKMwNShuyHmQMxlCyxcfEcPnqMQ4ePsGrdBlp078nXk3/KtuBq7fr1rFm7Fh8fH76fNIlZv83gySeeoE6d2sxfsIAFCxaU4BkYDJ6iyMx05LqVpWCKxoAYSpTy4eU4snUN7Vq1oG7tWjS4pA4jHh1D287dmPj9FOLj49m+YyehoaE0b9aU7t27n63r7e3N3XcN5ZFHHyMzs3StODYY3FBmHYjBUOiUCwtl1pQJlAsNIapqJJ+8+TIJCQncN/IBqtSsw6iHHmHT5i08//RTbnU7d+pEWLkw7r7rLmJiYkpAe4PBM87EwsptM0NYBkMeCQoM5JdvvyQyIoIxL7/B4488zJZ1q3jx2Wfo2KE9UydPolXLFm71RIQfJk8mKiqKdm3bMuapp3JcgGgwlBgeR+MtOxbEGBBDqcHPz5f3X32BX74dxxdfjufGW26jUcMG/Dr1B7p37WJZLywsjBdfeonlK1YQGxdHyxYtqHfJJdxy882M+9okljKUHjwxIGUJ44WVBzKD9O66dqvv3CKaqY/dypFX8NLUOZGsX5EdZhGNN81b766ZnKFXVN8KhFj4DytsSKZ+gR82Lxz+7sdPsXAV9Q9yd+9s3ukyFs28lGm//c5jTz5FeFgYdwzsT4NL6lKvUSPCQkMBCAsOpPc112Kz2RARQoKDuPeuoRzcuZWdu/cw/IGHmTbzT26/Z4TbMdLi9foHeAk2EQLOizgrSYna8jklvUpM13ur7Xbo61QJ0l9wqzzayWlWrtQKNC7BmRbfZ6BYf5fa5v2CtfJ0X+trYXfojyFp+uuKIxNbcqy73CLSoNX9aBXh2ElYDvsKH6Wck+i5liugERGRN4FrgDRgJzBEKXW6QI1aYHoghjxjaTwKEZvNRv9re7Nm3h8Mu+NWFixZxkNPv0CdS1sx+J7hrFi1hgmff8zpA7v4969Z3NDvWqKqVmXuggVE1KhN0zYdOHj4MGO/+KLIdTUYPMWjIayCH+YvoLFSqgnwH/BkwZvUY3oghlKN3W7nlv79uKV/PwBOJ6cx9qsJ3DX8AXbv3UdgQAC+vj7cefttvPnKS5QPD+d0bCwhwcF4eXmR5p3TG6jBULx4klCqoG5YSqmscXeWAv0L1GAOGANiKFOEhoTw6IMjefTBkWRkZHDi5CnCy4Xh7XtudXd4uRxWaBsMJYRSniWUchW5XkSydp/HKqXG5uOwdwJT8lHPI4wBMZRZvLy8qBShn5cyGEofzoRSuZZyWpBpSqlnrMqIyN9AZc2uMUqp6a4yY4AMYFK+1PUAY0AMBoOhOFCgHB4sePWol6KuyGm/iNwB9AEuV0XoF2wMiMFgMBQDCuWRASno815EegCPA12VUprIpoWHMSB5QIne/dZL6W8KL5veyc1qHk0pRbKmi1veX/81Wbl3+iYc0cq9/fRulml2i+iwFueFzY6yiH7qihina01f3gLlpY+imukfplfJwjPMZvGdVQzQX9N05TyF9PMurfiHasvb05OwpegjxIZYXO+QQAt/2sxUrVh56SPZJp6v5Blsdm0k2zQLN+5M0etj89LL/Szc0O0Z1rlZYh36thw2vUswYkP5BLiLda69QGKIPq1xag5DRtaxg4sIT3sgBffD+gjwBf5yRbdeqpS6t6CN6jAGxJBnLI3HRYiV8TAY3FAOHOn6kP3ZixUsrptSqk6BGsgDxoAYDAZDMVFYcyClBWNADAaDoRgorjmQ4sQYEIPBYCgOCtELq7RQ5IPZIhImIj+JyFYR2SIi7UUkXET+EpHtrr/alV8i0kNEtonIDhF5Iou8ioj8IyLTRSTIJasnIvNEZK3rOPlZdGMwGAxFg1JkZqTluikr55VSSHHMhr4P/KGUqg80BbYATwBzlFJ1gTmuz9kQETvwMdATaAjcLCINXbtHASOBccAgl+wD4F2lVDOlVAPgw6I7JYPBYMgbZ4awct1MD8SJiIQAXYAvAZRSaa6okH2BCa5iE4B+muptgB1KqV1KqTRgsqseOAPIOlzbGZ/CSOBsRiGl1IbCPBeDwWAoGJ4ZkLI0hFXUcyC1gGPAeBFpCqwCHgAqKaUOASilDomIziW7KrA/y+cYoK3r/4+Ab4FY4BaX7F3gHxFZDPwJjNeFMBaRYcAwgOjoaObNm+fxyVi+GVjJLdYgWN0eyUmJbFy5TNOM1RoKfUs2hz78u3OnPni7sniXkDz6pCckJrJkqfs5WHnjW77BWK5BsbhlLb4Dq7U7zir6OkmJiaxYutRNLlZnYTWubXGtrdfEWN1H+quUYbEOKCVJ/x1YDYzkbYWOE6v1NVbh1jNV3o6SnJTMvyvXatrXn4XDtk+vTg4PYy97MbujK1CepF42BiRb+y2AkUqpZSLyPprhKgt0d5wCUErtxdmzObdDqfEiMhvogbOnco+INFVKpZ5XbiwwFqBVq1aqW7dueTidomXevHmUJn3ygzmHkqes6w8Xxjm4oRQOTZ4Wt2KO3ONllRaK2gTHADFKqTOvQz/hNChHRCQSwPX3qEXdalk+RwEHczqYUuqgUuorpVRfnEHEGhdQf4PBYCgUPJ4Dseyvlz6K1IAopQ4D+0Wknkt0ObAZ+BW4wyW7A5iuqb4CqCsiNUXEBxjoqqfF5bHl7fq/MlAeOFAoJ2IwGAwFRTl7F7lthZFRqrgojnUgI4FJLiOwCxiC03D9ICJDgX3AAHC65wLjlFK9lFIZIjICmI1z0vwrpdSmHI5zFfC+iJwJyPOoy4AZDAZDKcCzhYRW80ilkSI3IEqptUArza7LNWUPAr2yfJ4FzPLwOA8DD+dPS4PBYChqzEp0g8FgMOQDpRSZHgVTND0Qg8FgMGSl+MK5FxvGgBgMOZCRkcH27dsJDAykevXqJa2OoUxjhrAMhouC+Ph4xowZw7hx46hSpQqnT59mwIABfPLJJzks7DQYrFEZKaTHLM+9XOIxKCPdEClL1q6wEZGVJa3DeVQAjpe0EgXEnEPJU9b1h9J5DseVUj3yW1lE2gAVPSiaDvxVlLnMC4uL2oCUNkRkpVJK57FWZjDnUPKUdf3hwjiHiwGTm9RgMBgM+cIYEIPBYDDkC2NAShcXQhIscw4lT1nXHy6Mc7jgMXMgBoPBYMgXpgdiMBgMhnxhDIjBYDAY8oUxIAVARL4SkaMisjGLLFxE/hKR7a6/5bLse1JEdojINhG52qLNnOq/KSIrRaSr6/PPItIvy/5tIvJ0ls9TReT6PJzPQyKySUQ2isj3IuKXkz7n1e3hOv4OEXkii7yKiPwjItNFJEhEwkTkhLhW44lIexFRIhLl+hwqIidFLNLw5X4OYSLyk4hsFZEtrvbL2jnYRWSNiPzm+lxm9BeRaiIy13XtN4nIA2XtHAyeYy5uwfgaZwbErDwBzFFK1QXmuD4jIg1x5jRp5KrziYjocp5a1a/v2t8FGO76fzHQwbW/PJAAtM/SVntXmVwRkarAKKCVUqoxzhD6A630Oa+uHfgY6Ak0BG52nS+uNkcC44BBrjTDh4EGrv0dgDVnzgNoByxTKt8xrd8H/lBK1QeaAlvK4Dk84NL7DGVJ/wxgtFKqgaud4S49ytI5GDzEGJACoJRaAJw8T9wXmOD6fwLQL4t8slIqVSm1G9gBtNE0a1XfjjO1uOJcut9/OfeD6QD8BlQUJzWB5DzmRPEC/EXECwjAmQHSSp+stAF2KKV2KaXSgMmueln1duSg97vnffbI6J2PiITgNLBfAiil0lwPmrJ0DlFAb5wPyjOUGf2VUoeUUqtd/8fjNIRVy9I5GDzHGJDCp5JS6hA4f0xAhEteFdifpVyMS+ZRfVcyrQBgEfCpq+wqoLE4k3V1AJYA23C+lXXA+QPzCKXUAeAtnAm+DgGxSqk/czifrOR0bh8BnwP3AhNdsrM9J6AW8CPncsbkSe/zqAUcA8a7hoDGiUhgGTuH94DHIFte07Kk/1lEJBpoDiwrq+dgyBljQIoPXQS+PPlQK6VGKqVaKqX+cX1OBTbhzDPfDucPdQnOH0+e3sBcY9J9gZpAFSBQRAZ5Wl2nrkvHvUqpLkqpa1xvpOB6c3T1kvYopVKcKkgQ0BLIPeKcHi+c1+JTpVRzIBHNUElpPQcR6QMcVUqtymvd0qB/NmWc7UwFHlRKxZXFczDkjjEghc8REYkEcP096pLHANWylIvCOUTkaX0rFuMctglWSp0ClnLOgOTlDewKYLdS6phSKh2Y5mrDE308PTcAlFLbgXLANTgNHjh7U0NcOiTkQe/z9YhRSi1zff4Jp0EpK+fQEbhWRPbgHL65TEQmliH9cenojdN4TFJKTXOJy9Q5GDzDGJDC51fgDtf/dwDTs8gHioiv642pLvo3JKv6VvwL3AOsc31ej7M3Uh1n78RT9gHtRCTA5dlyOc7xa0/0WQHUFZGaruG0ga56ObEE52TxkiyfH6QA49au+Z79IlLPJboc2FxWzkEp9aRSKkopFe06/j9KqUFlRX9wvv7jnIPaopR6J8uuMnMOhjyglDJbPjfge5zzBek4356GAuVxeplsd/0Nz1J+DLAT5zxFzyzycTi9n8ipvoUOETi7+Xdlkc0DZufjfF4AtgIbgW8BXyt9cA5zzcpStxfwn+v8xnhwrEeBNMDf9TnadR43F/A7aQasxGlIf8H5hlqmzsHVVjfgt5zuidKoP9DJ1cZ6YK1r61WWzsFsnm8mlInBYDAY8oUZwjIYDAZDvjAGxGAwGAz5whgQg8FgMOQLY0AMBoPBkC+MATEYDAZDvjAGxGAwGAz5whgQgxYRKdJVvCIyyxWSO0xE7s9H/W7iCneeh/KxIjLLYv/XItI/r3qURVzXokOWzw+JyD4R+agk9TKUPYwBMZQISqleyhkpNwzIswHJJwuVUr2K8gCuSMalnW6cC0KIUupd4NkS08ZQZjEGxOAxItJMRJaKyHpxJrMq55LPE5HXRWS5iPwnIp1d8gAR+cFVfoqILBORVq59e0SkAvAaUFtE1oozYVa2noWIfCQig13/9xBnoqhFwPVZygSKM7nXClcU3r7kgivk/UcisllEZpIlOqyItBSR+SKySkRmZ4nh1Np1Lktcum50yQeLyI8iMgP400ofcSaKetMlXy8i97jkkSKywHUNNp65fhZ6X+U6/mrXMYNc8mdd7W4UkbGukCKIyCjXOa4XkcnijJB7L/CQ63iWxzIYcqWkl8KbrXRuQIJGth7o6vr/ReA91//zgLdd//cC/nb9/wjwuev/xjiTDZ0J2bIHqIAz9MTGLMfohiuEh+vzR8BgwA9nqO+6OKO2/sC5UB+v4EwyBM4ezX9A4Hm6n9/u9cBfOPNMVAFOA/0Bb5xxlCq6yt0EfOX6fyPQwfX/a2f0dukXw7nwHFp9gGHA0y65L86QKzWB0bjCdrj0Cbb4TioAC86cG/A48Kzr/6whc74FrnH9fxDwPaOL6+/zwCPntT0Y+Kik7zuzla2tLHS3DaUAEQnF+QCa7xJNwJl/4Qxnoq6uwmkUwBkX6X0ApdRGEVlfABXq44ywut2lz0ScD2SAq3BGsX3E9dkPZzDJLW6tnKML8L1SKhM4KCL/uOT1cBq7v1wv8XbgkIiE4XywnwnS9x3QJ0t7fymlziQXs9LnKqBJlrmWUJwGcQXwlTij2P6ilFproXM7nJn6/nXp5sO5IILdReQxnDljwnEG0pyB0+hPEpFfcMYGMxgKDWNADIVFqutvJufuK11+h9zIIPvQql+W/60Ctwlwg1JqWx6PpWtPgE1KqfbZhBY5vLOQmJs+rmGlkUqp2W4HFemCMxPhtyLyplLqGwvd/lJK3XxeXT/gE5y9u/0i8jznrltvnMbyWuAZEWmUy3kYDB5j5kAMHqGUigVOZRkzvw2Yn0MVcGZPvBHO5oS/VFMmHgjO8nkv0FCcYe9DcYZkB2eU4JoiUtv1OetDdDYwMsu4f3MPTmkBzvD6dtccR3eXfBvOtMDtXW15i0gj5cy1Ei8i7VzlBubQtpU+s4H7XD0NROQS13xJDZyJpL7AGQq9hUW7S4GOIlLHVT9ARC7hnLE47poT6e/abwOqKaXm4sxyGAYE4X7NDYZ8YXogBisCRCQmy+d3cOZx+ExEAoBdOBP35MQnwATX0NUanMMpsVkLKKVOiMi/rgnp35VSj4rID66y2131UEqliMgwYKaIHMdpnBq7mnkJZyrY9a6H9h6yDy/p+Bm4DNiAc45ivus4aa4hpg9cBszL1fYmnOH6vxCRRJzzPrHuzeaozzicw3urXfJjOHODdwMeFZF0IAG4XdeoUuqYOB0KvhcRX5f4aaXUfyLyhetc9uAcEgPn8NtE13kI8K5S6rRrsv8n1+T+SKXUwlyulcGgxYRzNxQZImIHvF0P/9o480BcopRKKwFduuGcOM7NsOTURpByZbkTkSeASKXUA4WjYcniMkytlFIjSloXQ9nB9EAMRUkAMNc1ZCPAfSVhPFykAY1FZJbK/1qQ3iLyJM7fzV6cnktlHhF5CKdr79SS1sVQtjA9EIOhFCIiy3C6+mblNqXUhpLQx2DQYQyIwWAwGPKF8cIyGAwGQ74wBsRgMBgM+cIYEIPBYDDkC2NADAaDwZAv/g/kJEK8GASg2AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import cartopy.crs as ccrs\n", "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n", "from matplotlib import colorbar, colors\n", "import cartopy.feature as cf\n", "\n", "# Draw coastlines of the Earth\n", "ax = plt.axes(projection=ccrs.PlateCarree())\n", "ax.add_feature(cf.BORDERS)\n", "#ax.coastlines() \n", "ax.add_feature(cf.COASTLINE)\n", "\n", "#adding ejes\n", "xticks=([-120,-100,-80,-60,-40,-20,0])\n", "yticks=([-75,-60,-45,-30,-15,0,15])\n", "ax.set_xticks(xticks, crs=ccrs.PlateCarree())\n", "ax.set_yticks(yticks, crs=ccrs.PlateCarree())\n", "lon_formatter = LongitudeFormatter(zero_direction_label=True,number_format='.1f')\n", "lat_formatter = LatitudeFormatter(number_format='.1f')\n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter)\n", "\n", "#adding grillas\n", "\n", "ax.gridlines(draw_labels=False, xlocs=xticks, ylocs=yticks)\n", "(data_jan_nino_mean-data_jan_normal_mean).plot(robust=True)\n", "\n", "plt.title(\"nino-normal, 81-10\")\n", "ax.set_aspect('auto', adjustable=None)\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "# con t-test\n", "from scipy.stats import ttest_ind, ttest_ind_from_stats\n", "\n", "#data=data_jan_nino.copy()\n", "pvalues = np.zeros((data_jan_nino.shape[1],data_jan_nino.shape[2]),dtype=float)\n", "\n", "for ni in range(0,data_jan_nino.shape[2]): # loop over longitudes\n", " for nj in range(0, data_jan_nino.shape[1]): # loop over latitudes\n", " \n", " info_a=data_jan_nino.isel(lat=nj, lon=ni).values\n", " info_b=data_jan_normal.isel(lat=nj, lon=ni).values\n", " \n", " array_sum = np.sum(info_a)\n", " array_has_nan = np.isnan(array_sum)\n", " \n", " if array_has_nan == True:\n", " \n", " pvalues[nj,ni] = np.nan\n", " \n", " else:\n", " \n", " result = ttest_ind(info_a,info_b).pvalue\n", "\n", " pvalues[nj,ni] = result" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.DataArray 'precip' (time: 7, lat: 28, lon: 40)>\n",
       "array([[[3.340e+00, 1.970e+00, ..., 0.000e+00, 3.000e-02],\n",
       "        [9.690e+00, 8.940e+00, ..., 1.560e+00, 1.700e-01],\n",
       "        ...,\n",
       "        [1.190e+00, 1.070e+00, ..., 9.600e-01, 8.100e-01],\n",
       "        [9.600e-01, 8.600e-01, ..., 1.020e+00, 1.070e+00]],\n",
       "\n",
       "       [[3.340e+00, 1.950e+00, ..., 1.000e-01, 4.800e-01],\n",
       "        [7.650e+00, 6.210e+00, ..., 1.590e+00, 4.400e-01],\n",
       "        ...,\n",
       "        [1.010e+00, 1.150e+00, ..., 1.090e+00, 9.100e-01],\n",
       "        [9.500e-01, 7.700e-01, ..., 1.230e+00, 1.300e+00]],\n",
       "\n",
       "       ...,\n",
       "\n",
       "       [[7.640e+00, 4.770e+00, ..., 0.000e+00, 0.000e+00],\n",
       "        [1.051e+01, 6.620e+00, ..., 2.220e+00, 1.000e-02],\n",
       "        ...,\n",
       "        [9.100e-01, 7.500e-01, ..., 1.390e+00, 1.400e+00],\n",
       "        [1.380e+00, 1.360e+00, ..., 1.470e+00, 8.800e-01]],\n",
       "\n",
       "       [[5.550e+00, 4.710e+00, ..., 4.000e-02, 2.200e-01],\n",
       "        [5.060e+00, 5.800e+00, ..., 2.960e+00, 4.000e-02],\n",
       "        ...,\n",
       "        [8.200e-01, 1.280e+00, ..., 1.450e+00, 1.450e+00],\n",
       "        [1.200e+00, 1.240e+00, ..., 1.080e+00, 7.600e-01]]], dtype=float32)\n",
       "Coordinates:\n",
       "  * lat      (lat) float32 8.75 6.25 3.75 1.25 ... -51.25 -53.75 -56.25 -58.75\n",
       "  * lon      (lon) float32 251.2 253.8 256.2 258.8 ... 341.2 343.8 346.2 348.8\n",
       "  * time     (time) datetime64[ns] 1982-01-01 1987-01-01 ... 2009-01-01\n",
       "Attributes:\n",
       "    long_name:     Average Monthly Rate of Precipitation\n",
       "    valid_range:   [ 0. 70.]\n",
       "    units:         mm/day\n",
       "    precision:     2\n",
       "    var_desc:      Precipitation\n",
       "    dataset:       CPC Merged Analysis of Precipitation Standard\n",
       "    level_desc:    Surface\n",
       "    statistic:     Mean\n",
       "    parent_stat:   Mean\n",
       "    actual_range:  [ 0.   59.08]
" ], "text/plain": [ "\n", "array([[[3.340e+00, 1.970e+00, ..., 0.000e+00, 3.000e-02],\n", " [9.690e+00, 8.940e+00, ..., 1.560e+00, 1.700e-01],\n", " ...,\n", " [1.190e+00, 1.070e+00, ..., 9.600e-01, 8.100e-01],\n", " [9.600e-01, 8.600e-01, ..., 1.020e+00, 1.070e+00]],\n", "\n", " [[3.340e+00, 1.950e+00, ..., 1.000e-01, 4.800e-01],\n", " [7.650e+00, 6.210e+00, ..., 1.590e+00, 4.400e-01],\n", " ...,\n", " [1.010e+00, 1.150e+00, ..., 1.090e+00, 9.100e-01],\n", " [9.500e-01, 7.700e-01, ..., 1.230e+00, 1.300e+00]],\n", "\n", " ...,\n", "\n", " [[7.640e+00, 4.770e+00, ..., 0.000e+00, 0.000e+00],\n", " [1.051e+01, 6.620e+00, ..., 2.220e+00, 1.000e-02],\n", " ...,\n", " [9.100e-01, 7.500e-01, ..., 1.390e+00, 1.400e+00],\n", " [1.380e+00, 1.360e+00, ..., 1.470e+00, 8.800e-01]],\n", "\n", " [[5.550e+00, 4.710e+00, ..., 4.000e-02, 2.200e-01],\n", " [5.060e+00, 5.800e+00, ..., 2.960e+00, 4.000e-02],\n", " ...,\n", " [8.200e-01, 1.280e+00, ..., 1.450e+00, 1.450e+00],\n", " [1.200e+00, 1.240e+00, ..., 1.080e+00, 7.600e-01]]], dtype=float32)\n", "Coordinates:\n", " * lat (lat) float32 8.75 6.25 3.75 1.25 ... -51.25 -53.75 -56.25 -58.75\n", " * lon (lon) float32 251.2 253.8 256.2 258.8 ... 341.2 343.8 346.2 348.8\n", " * time (time) datetime64[ns] 1982-01-01 1987-01-01 ... 2009-01-01\n", "Attributes:\n", " long_name: Average Monthly Rate of Precipitation\n", " valid_range: [ 0. 70.]\n", " units: mm/day\n", " precision: 2\n", " var_desc: Precipitation\n", " dataset: CPC Merged Analysis of Precipitation Standard\n", " level_desc: Surface\n", " statistic: Mean\n", " parent_stat: Mean\n", " actual_range: [ 0. 59.08]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_jan_nino" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "data_set = xr.Dataset( coords={'lon': ([ 'lon'], data_jan_nino.lon.values),\n", " 'lat': (['lat',], data_jan_nino.lat.values)})\n", " \n", "data_set[\"pvalues\"] = (['lat', 'lon'], pvalues)\n", "\n", "data_set.to_netcdf(\"pvalues_nino_nnl_81_y_10.nc\",mode='w')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEWCAYAAACqitpwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABj0klEQVR4nO3dd1yV1R/A8c8XBNy4FcGcOHHj3ntrrjQzc5QrV5Zp9UvLzF1aaZqaliN3mZkzFc3ce4sKDlDMhYIoIpzfH/dCIONe4F64wHn3el5yn+c55zknhS/nOUuUUmiapmmaJdmldgE0TdO09EcHF03TNM3idHDRNE3TLE4HF03TNM3idHDRNE3TLE4HF03TNM3idHDRLEpEGojIpdQuR0oTkc9EZHlql0PTbIUOLppFKaX+VkqVSe1y2BoReU1ELohIkIicF5FXo11rIiK7ReSRiFwzI68E7xeRYsbrISJyUUSaW7QymmYGHVy0DElEMqXgs1yB5cBoICcwBvhFRAoYb3kCLDaeN4ep+1cCJ4C8wCfAOhHJn7TSa1rS6OCiJZqIXBORD0TktPG359Uiktl4rbGI+Jlzr/H6OyJyRUQeiMhGESmcwHP7isg+EZkpIg9FxFdE2kS7XtiYxwNjnu9Eu/aZiKwTkeUi8hjoKyJeIjJJRPaLSLCI/CEieUVkhYg8FpEjIlIsWh7fiMhN47VjItLAzP9lbkCgUmqLMvgTQ4AoCaCUOqyUWgb4mJNZQveLSGmgGjBBKfVUKbUeOAN0NbOsmmYROrhoSfUa0BooDlQC+ib2XhFpCkwxXncBrgOrTDy3FnAJyAdMB34UETFeWwn4AYWBbsBkEWkWLW0nYB2QC1hhPNcTeBNwxfDD/gCwBMgDXAAmREt/BKhivPYLsDZ6oEzAUeCCiHQUEXvjK7FQ4LQZaROrAuCjlAqKdu6U8bympRgdXLSk+lYpdUsp9QD4A8MP3cTe+wawWCl1XCkVCnwE1IneWojDdaXUQqVUOPAzhqBUUESKAPWBsUqpZ0qpk8AiDIEj0gGl1AalVIRS6qnx3BKl1FWl1CNgC3BVKfWXUuoFsBaoGplYKbVcKXVfKfVCKfUV4ASY7F8ylnUphoAUavxzkFLqiam0SZAdePTSuUdADis8S9PipYOLllQB0b4OwfBDLbH3FsbQWgFAKRUM3AdcjaPOgo3HubjyUkqFGL/MbszrwUu/sV/H0CKJdDOOst2J9vXTOD5H1UtE3jd2yj8SkUDAGUMLKkHGDvXpQGPAEWgELBKRKmak/Tja/4f5pu4HgjH060SXEwiK415NsxodXLTUdAsoGvlBRLJh6IT2N446y248zHmlcwvIIyLRf0N/BfCP9jnJS4Ab+1fGYniFl1splQtDi0ASSmdUBdirlDpqbDUdAQ4BJkdxKaUmR/v/MNiMZ50DSrz0/6Gy8bympRgdXLTU9AvQT0SqiIgTMBk4pJS6ltiMlFI3gf3AFBHJLCKVgAH817eSXDmAF8BdIJOIjCd2CyE+R4AGkS0VEakKNMDY5yIidsa+GwfDR8ksIo7xZZbQ/Uopb+AkMMF4vjOGfq71ia2wpiWHDi5aqlFK7QQ+xfCD7zaGDvWeycjydaAYhlbMbxhGTO1IZjEjbcPQJ+ON4XXbM+J+zRaLUmoP8BmGIcFBGOo7WSm13XhLQwyv4DZjaG09BbbHkRVm3t8T8AQeAlOBbkqpu+aUVdMsRfRmYZqmaZql6ZaLpmmaZnE6uGiapmkWp4OLpmmaZnE6uGiapmkWl2KL99ma1q1bq3v37qV2MaI8f/4cR8d4R58mW2BgIP7+/jx//pzcuXOTL18+QkJCuHPnDiVKlMDb25tixYqRO3fuONOfPHkSDw8PMmWK/5+MteuQEnQdUl9C5b9//z63b98mS5YsPHnyhLCwsBjX8+XLR9GiUVOnuHbtGgBFixblv1WCEu/YsWPblFKtk5wB0KpJNnX/QbjpZ50OTfazbIJSKkMe1atXV7Zk9+7dKfKcwMBA9dlnn6latWqpcuXKKUBlz55dlSpVSt25cyfedNmzZ1cPHz5MMO+UqoM16TqkvoTK//HHH6tcuXKpIkWKqEaNGqk1a9aoCxcuqK+++kqtWrVKhYeHx7g/MDBQeXp6qhUrViSrTMBRldyfOZWcVPhtd5OHJZ5lC0eGbblkVM7OzkyYMIEJEwzrMZYsWZK7d+9y4MAB8uWLfyWTIkWK4OfnR65cuVKknEopAgMD421JaRlTxYoVqVu3Lp07d+bOnTusWbOGDRs24OjoiLe3N7t37yZnzpw0btyYli1bEhAQQKNGjbh48WJqFx0FRBCR2sVIMbrPJYM7c+YMNWrUYODAgTx79izOewICAvDx8SFbtmwpVq6PPvqIAgUK0K5du6hXH4cOHeLFixcpVgbN9lStWpW9e/eyY8cObt26RdeuXWnTpg3169fHw8ODn376CXt7eyZMmED27NmpVKkSs2bN4vjx4yxevJiIiAhCQkKYPn06NWrUYN++fSaf+fTpU5P3mEOhCFPhJo/0QgeXDC5r1qxs3ryZZ8+eMXXq1DjvOXDgAM2bN6d48eJWL8/z58/53//+x6+//srRo0fZvXs3/v7+/PLLL9SuXZuVK1davQya7SpdujQ1atQgd+7czJ07l549e9K7d28GDBhAmzaGrX0mT57MkSNHuHLlCsHBwaxZs4azZ88ya9YsOnbsiKenJ//88w9vvvkmffr0ITw8/h/oSin69+9vsfJHmPFfeqFfi2k4OTkxf/586tSpQ6lSpejdu3eM68HBwSnSYvD19aVHjx7kz5+fkiVLUrNmTUqWLEmxYsWYNm0ajRo1Ytq0adjZ2VG+fHmqVq1qOlMtXRERFi9ejKenJ+7u7vTp04fHjx8zd+5cFi9eTO3ataM67t3c3ADo2rUrXbt2JSgoiFWrVpEtWzZ69eqFUoqNGzcybtw4ZsyYEefzjh49ysGDBy1SdoUiXGWcFVF0y0UD4JVXXmHHjh18+OGHdOrUidWrV3P69GmuX7/Oxo0b6dixo8WfuXfvXr777jucnJyoXLkytWrV4o033uDzzz/n77//5pVXXmHMmDG89957rF+/nmbNmtG+fXv+/PNPWrVqxe+//27xMmm2r1ixYqxZs4ZTp05Ru3ZtWrVqRVhYGH/99Re7d++ON12OHDl455136NWrF2AIVP/73/9YtGhRvL88Xbx4kVKlSlms7BEok0d6oVsuWpTy5ctTv359tm3bxv3797l8+TJhYWFUrVqVH3/8kaFDh1rkOUopJk6cyJIlS6hduzYLFy6kYsWKZM+endDQUFq2bMm0adMYNmwY7777LqNHj2b//v0xvsmPHj1Ku3btKFKkCNWqVYvK98mTJ2TPHnNrmYcPH/LgwQMeP35MUFAQL168IDAwkMyZM7N+/Xpu3brFsmXLEhzQoNmWpk2b0rRpU7755hs+/fRTevbsiaenZ6Lz2b59O4GBgdy/f5+CBQvGuv7tt98yceJE/vrrr2SXWQHh6Sh4mKKDixZDzZo18fX1Zd++fSilOHjwIAsXLuTMmTOcOXOGihUrJvsZmzZtYuXKlRw6dCjGN3R4eDhVq1Zl0qRJ9OvXj2HDhtGwYUMmTZoUKw9PT0+6dOnCq6++St68eQkJCcHPz4/nz58zatSoqNdnPj4+lC1bFjc3N3LmzEl4eDhnz54FIH/+/NSqVYvdu3dz9+5dHVzSoJEjR5I7d24mTZrEli1bEp2+b9++TJ8+nePHj9O6dWtEhG3btrFu3TreeecdRARlwVdZ6allYooOLloMmTJlokaNGvj6+uLr60vTpk2pU6cOc+bMoU+fPuzbty/Zo8YOHDhAr169Yv2meO3aNQIDA+nXrx+LFi0C4NatW4SHh2Nvbx8rn2nTpjF48GDCw8PJkiULbm5uhIWF0b59e2rWrEmtWrX4888/GTVqFNOnTwfA398fd3d3fvjhB/r06YObmxtOTk4pOhJOs6w2bdowYsSIOH/5OXfuHAcOHEBE6NChAwUKFIhxvXTp0rRp04Zu3bpRpUoVXF1d2bRpEw0aNKBWrVoULlyYt956yyLlVECY7nPRMqoWLVqwatUqSpQoQbNmzThz5gwA7777LlWrVqVLly6EhobGm/7mzZuxZk2/7NSpU1SuXDnW+UuXLlG2bFlEhI8++oiDBw+SI0cOli1bFmc+OXPmpHLlylSrVo1y5cqRI0cO8uTJw+7du5k2bRolS5Zk0aJFUYEFwNXVlenTpzN06FDs7Oz466+/+OSTT6I6f7W0J3/+/MybN48mTZpE9cNFRETw1ltv0bBhQ/755x9+/fVXXnvtNSIi4h6NNX36dMaOHUvXrl35+++/WbVqFWvXruXmzZvMnj3bIuVUKMLNONILHVy0GCpUqICvry/58uWjXLlytGjRgjlz5qCUomPHjuzfv5+hQ4fG+iZ99OgRvr6+VKxYEUdHR3r16sXSpUtjBZqtW7dy4sQJXF1dedmGDRto1KgRADVq1ODixYvY2dnh4uKSqDo4OTnRrFkzRo8eTfPmsXcSHjZsGEFBQdy7d48mTZrw448/cvOmWft+aTbq9ddfZ+vWrbz99ttcvHiR33//nbNnz3Lu3DmWLFnCxo0befjwIdu2bYuVtmrVqpw6dYqOHTvSo0cPqlevTu7cuenWrRt2dnZRAwCSTUG4GUd6oYOLFouzszN3797l/PnzbN++neXLlzN69Gi8vb1p27Yt+/fvp3v37vzzzz88efKEUaNGRa3n9NNPP/Hll1/SvHlzFi5cSJcuXXj+/DkAK1eu5O233+aLL76gevXqsZ67bt06duzYQUBAAEOHDmXcuHGcOXOGBg0aWKWeuXPnZsGCBdSrV49ff/3VKs/QUo6npyfjx4+nZ8+eDB48mEmTJlGoUCEA7O3t6dWrF1u3bo2VbtCgQaxbty7e+S7JWZMsOsMMfdNHeqGDi5agSpUqMWfOHNatW0fp0qVZs2YNn376KY8fP6Zhw4bkz5+f+/fv4+3tTbZs2Rg3bhzr1q3jl19+YevWrWTKlIlWrVoxYcIERo0axdatWxkwYECc37AnTpwgZ86c/Pbbb7Rr144FCxZw/PhxsmbNatU61qpVi507d7Jr1y6rPkezvqFDhxIUFMT7778fNakyUsmSJTl+/Djh4eEEBwdHnXd1daVQoUIcP37cyqUTws040gsdXDST8uTJQ1BQED/88AMVKlQgIiKC33//nTt37vDvv/8yZ84cpk2bxu3bt1m3bh1HjhwBoE+fPsyePZuDBw/y+PFjNm/ejIeHR7zPKVq0KCNHjmTSpEk8ffqUDh06UKJECavXr3HjxoSGhjJ06FAuXrzIjRs3rP5MzTrs7e2pV69enCP/6tSpw759+yhRogSenp5RLeqpU6cSEBAQ9dlaDB36YvJIL3Rw0UwqUaIEx48fx9/fn3PnzrF8+XLy5cvHL7/8QubMmVm1ahW//vor5cuXx8PDA3t7e9q1a8fWrVtxc3OjWLFiUe+yTWnWrBkFChTg3LlzKVAzgzJlyvDVV1/x5MkTMmXKRLVq1Vi9enWKPV+zLA8PDw4fPhzr/NmzZ3F2dmbu3LmUKlWKb775BoDz58/zxRdfUK9ePauWyzDPJeO0XPRQZM0sJUuW5NSpUwQHB5MjR46ovpCRI0dy5MgR7t+/H2OBvwoVKuDh4cHgwYO5f/9+gvvARKeUwt/fP84JbdYSFhZGs2bN+O677yhUqBA7d+6kRYsWFClShLp166ZYOTTL6NWrF1WqVOHdd9+NGpp8+/Zt3nrrLX7//XcaNWpEUFAQ69evZ/jw4SxbtowOHTqkSNki0lHLxBTdctHMJiLkyJEDMCx9/tdff1GiRAmmTZtGUFBQjNcKTZs25eHDhyxdupRFixYlava0k5MTS5YsifocHh5u0YlsLwsICCA0NJRWrVoBULlyZX766Se6deuW4LBrzTa5ubnx7bff0rFjRy5fvgwYVtkeMGBA1GjEPHnysH//flatWoWbm1uKBJeM1nLRwUVLMk9PT5YtW0aJEiXYs2dPjPfcmTJlYvv27bi6uiaqFSIiHDt2jPnz5+Ph4UH+/PlxdHSkSJEijBs3zipBJlOmTLi7u8dYFbpt27ZEREQkuFaVZrt69erFuHHjqFOnDp9++imbN2+mT58+UddbtWrFihUr+PPPP7l//z4ODg5WL5NCCMfO5JFepJ+aaKmibt26TJs2jYYNG8a6VqxYMb744gvef//9ROVZoEABjh07xsqVKzl79izPnz/Hy8uLLVu28NNPP1mo5AYrVqygbNmylCtXLlY533rrLQYOHMiUKVMs+kwtZQwaNIjDhw9HzZd6eaO7Jk2a8OLFC1xdXbGzS5kfhRFKTB7phe5z0ayqY8eODBw4kIiIiER9A7u6usaYaFmqVCmWL19O06ZNuX//PkFBQeTJk4dLly6ROXNm/ve//5EnT55El8/f358333yTOXPmAIbO3UjTpk1j5MiRNGzYkGzZsjFixIgYaSMiIhARi82D0CyvRIkSrF27ls8++4y2bduyc+fOGEEmMDCQFy9e8Mcff9ChQwer/l0qhOcq9jJG6ZVuuWhWlSNHDnLlysX169eTnVfFihWZPXt21Egyb29vSpUqxd69e5O0iVh4eDhTp06N6muJS+HChfnrr7/48ssvqVmzJiNGjKBv374UKVIEJycn3NzcePvtt1m/fn28O3lqqW/ChAk0btyYatWqRQ2VB8Przy+++IIPPvjAYsu8xMcwidLO5JFepJ+aaDbp2LFjiAj58+e3SH5vvPEGS5Ys4fPPP2fu3LkMHz6cgIAAmjZtmui87O3t6devH/PmzYt3zSkwvN7LkycPAwcOjFqJYMOGDQQHB+Pl5UXBggV55513cHV1ZciQIVHrsWm2Q0T46quvmD59Om3bto2xXl3v3r2j1pgLCQmxajkyUoe+fi2mWZWTkxNZs2aNtceKpSxdupRy5cpRtmzZJKWfOnUqTZs2xcPDg5IlS/Lee+/FuickJIRr167Rq1evWKsFuLu74+Pjw/vvv0+fPn1YunQpzZo1Y8mSJbRr1y5JZdKsp1u3blSoUIEWLVrw/PlzBgwYABiWAgLDNtuRf8cPHz7kxIkTFptzpZQQrjLO7/MZp6ZaqihXrhwBAQE8ePDAKvmfOXOGtm3bJvlduYODA6NGjeLFixfcv3+fR48exbi+detWSpYsGWdgAcMq0Nu3b2fkyJEUKVKETz75hD/++IMBAwawYsWKJJVJs65y5cqxe/duJk6cyPjx43ny5Ak+Pj6UKlUq6hXuiBEjKFGiBBMmTIjRD5dcEYjJI73QwUWzKnt7e/Lly0dAQIBV8v/333+TvMnXrVu3mDJlCu+++27UXJ0nT57EuOfgwYP06NGDH3/8Mc48RARHR8cYLbNatWqxa9cuxo4dy549e5JUNs263N3d2bdvH5cvX8bd3Z158+YRHh5O165dqVatGk5OTpw/f56///6befPmWeSZhg79TCaP9EIHF82qrl+/zt27d3F3d7dK/qVKlYr3N8vbt29Tv359Ro0axapVqwgKCsLf359p06bRsmXLqO0FNm3aROfOndmyZQsPHz6MsYDhvn37aNy4cbzPL1iwII8ePeLOnTsxzpcvX5433niD/v3788cff1ikrpplFSlShJUrV7Jp0yaCgoIoXLgwzZo14/r168yYMSPRWz2Yojv0Nc2CChYsSOnSpfnf//5nlfxbtGjB+vXrY7U4wLCsyz///MP333/PsmXLKFKkCFWrVsXHx4fBgwdz8+ZNFixYELV6QOHChXFwcIjaBhkM7+KvXr0a7/MdHBwYMmRIrPpFRESwfft2WrZsyahRo+Jdzl1LfdWqVWPFihXs2LGDoUOHWq1/ECBcickjvdDBRbOqJ0+e4O/vT7du3aySf/369alSpUqcw0hfeeUVNmzYQOvWrfnzzz+5fPkyW7Zs4YcffqBLly6xfogcPnyY8PBw3njjjahzn332GVOnTmXx4sXxlqFXr1789ddfMc4tW7aMLFmyMHfuXLJkycKhQ4eSV1EtzdMz9DXNgsaPH0+3bt2oUaOGVfJ/8OABp06dihoi/LKQkBCyZMkCGLbDTWhl5nPnzpEtWzbs7f+b6FahQgVWrVrFyJEj+ffff+NMd/ToUXr37h31WSnFl19+ydSpU7Gzs6NNmzZs3749KdXT0pkIZWfySC/ST000m3LhwgU+/PBD1q5dy8SJE632nJkzZ6KUokuXLnFeL1GiBN7e3matSXb16lUcHR1jnW/WrBm1a9eOWmcsJCQEpRT379/nxYsX/PXXX5QsWTLq/shJepE7aLZq1SrO7XW1jMWwcKVuuWhakkVERNCzZ09CQ0PZsmVLkpZlMdenn36Kh4cH48aNi/N6xYoVCQwMJEeOHFSsWDHBWfRNmjQhMDAwzkA0ZswYPvroI0JCQqhYsSK5cuWiaNGiFCtWjB07dvDw4UMGDhxIcHBw1Aq8kcOj69evz7lz53j48KFlKq2lSQohTNmbPNILHVw0i3v69CkXL15k9uzZZm0QlhwhISE8ffqU7777LsZ+MpGyZs3Kb7/9RunSpbl06VKcHf+RmjdvTlhYGP7+/jHO379/n1OnTlGgQAEGDRqEj48Pa9eu5dGjR2zYsIHGjRvz7bff8vfff1OwYEGcnZ354IMPotJnzpyZ+vXrs2LFigRXAtDSN6UgXNmZPNKL9FMTzWYMHToUR0dHi/8g/fHHH3F3d6ds2bJ4eHhQuXJlqlSpErVu2f79++NMN378eDp16sSTJ0/ImzdvvPmLCNmyZWP69OlERERw9+5dVqxYQd26dTly5Ah58+ZFKUXlypWpUKEC9vb2eHp6smHDBnx8fDh48CC+vr78+uuvMfptwNDy+f777+nVq5fl/odoaYzpCZTpaRJl+pmxo9kEf39/9u3bR7Vq1Xjw4IHF1hQDQ59Iu3btGDRoEC9evCA8PBw7OzsKFCiAi4sLK1eupFmzZgA8fvyYNWvW8NNPP3H79m1+/PFHs/bsKF68OEuXLqVu3br4+vri6enJzJkzad++fYKrAIgIzs7O8V5v0qQJK1asoF+/fomvuJYuKEhXLRNTbCq4iEhr4BvAHliklJr60nUxXm8LhAB9lVLHjdd6Ah8CS5VSs1Oy3JphHabbt2/z2muvMWjQoKi+if/973+89dZbUTtYJkfx4sUZOXIkvr6+/P777zGu9e3blw0bNtC8eXMqVqxI3759cXFx4YMPPqB9+/Zmb7Nsb2/Pjh07+Ouvv3BwcKBly5bJLnckX1/fWC0aLWNJTx32pthMcBERe2Au0ALwA46IyEalVPTp120Ad+NRC5hn/BOgJ1ADWCEi2ZVSwSlWeI3Zs2dTuHBh9uzZQ7ly5QDo3r07/fv35/z588ydO5cXL14QEhKS4G/48VFK4ePjw9OnT9m4cWOs60uWLOHYsWN0796dzJkzU6tWLX788cckbQLl5ORk8UUnfX19GTJkCOvWrbNovlraoUhfm4GZYjPBBagJXFFK+QCIyCqgExA9uHTC0DJRwEERySUiLkqp2xD1slJF+1pLIUopsmXLFhVYgKjhuw0aNCBXrlzkzJmToKAgFi9eHO/Q4fiEhYUxffp0Lly4EG8rpHr16vj4+CSrHtbSo0cPxowZEzU8Wct4FBCWjtYOM8WWauoK3Iz22Y//WiUJ3eMK3AZ+BY4Cy5VSQXE9QEQGAgPBsEeHl5eXRQpuCZF7g6RFERER5M2bl5w5c8ZZhwULFvDixQvCwsKiWiDz5s0ja9asFClSxKzWhVKKGTNmcPv2bUQEPz8/K9TEen8Pw4cP59GjR/z44484Ojri4OCAk5NT1FLvlpSW/y1B2i9//NLXfi2m2FJwiev/+ssTDuK9Ryn1M/BzQg9QSi0AFgB4enqqhBYkTGleXl4JLpBoy37++Wd2795N5cqVzarD48ePyZ8/P126dMHb25sdO3aYnAujlGLWrFn8/fffrF+/3mp7nlvr7yEiIoJDhw7h5+eHv78/t27d4rvvvuPatWucPn2aihUrUqhQIYs8Ky3/W4K0X/74KEhXM/BNsaXg4gcUifbZDbiVhHu0FPT8+XN+++03WrdubXaanDlzUqZMGT744AN++OEHPvnkE5PLmosI69ato0yZMpw/fx4PD4/kFj1F2dnZUadOnRjnVq1axbBhwzh69CgPHz6kSpUqvPbaa/Tq1SvGPu9a+mGplktyBj8Zr9tjeNPjr5Rqb5FCvcSWwugRwF1EiouII4YO+pd7bjcCfcSgNvDI2N+ipZIvv/wSPz+/RC1M+ezZMwICAsidOzdTp05l+/bt9O3bl+fPnyeYztHRkQYNGqSbRSAzZ87M9evXOXHiBAEBAbz33nvs2bOH4sWLM3ToUItuUqWlPqXEImuLRRv81AYoD7wuIuVfui364KeBGAY/RTcSuJDcOiXEZoKLUuoFMAzYhqHSa5RS50RksIgMNt62GfABrgALgaGpUlgtirOzM3Xr1k3Uhl1Lly6lWrVqlChRgjx58nDq1Cl8fHxi7GseHwcHh3Qzy33OnDls376dXLlykTlzZjp16sTq1as5d+4c+fPnp1mzZrRs2ZK7d++mdlE1CzB06Ftk+ZeowU9KqedA5OCn6KIGPymlDgK5RMQFQETcgHbAIotVLg42E1wAlFKblVKllVIllVJfGs/NV0rNN36tlFLvGq9XVEodTd0Sa2XLluXCBfN/Afr777/55JNPmDJlStS57NmzM2nSJKZMmcKLFy8STO/n50fhwoWTXF5b0rJlyzhffxUuXJjPP/+ca9euUaZMGQYMGGDWwpuarRNzl3/JJyJHox0DX8oovoFN5t4zG8OcQKv+lmZLfS5aGrR3717y5MnDgQMHYu3G+LJz587RrVs3fvnlF6pWrRrjWsOGDSlcuDDjxo2jQ4cOrFu3jnPnztG4cWPu3LnD+++/T4kSJbhy5YrVdrW0NU5OTnz11VeULVuW/fv3U7JkSW7evEm1atX0ZMw0yNChb1afyz2llGcC15M8+ElE2gP/KqWOiUhjcwqTVDbVctHSng4dOrBnzx46derErVu34nyFExISwvLly2nTpg1ff/01LVq0iDOvefPmERQUxIcffoiI0LdvX0JCQsiVKxe1atXi559/xs/Pj2LFilm5VrbDzs6Oe/fuMXDgQMqVK8dbb71F4cKFeeedd9i8eTOhoaGpXUQtESy05H5yBj/VAzqKyDUMr9OaisjypNYnIbrloiVLvXr12LdvH3PmzMHOzi7G+l2hoaG89957rFq1itq1azNv3rwEZ75XqFCBH374Ic5refLkYezYsbi6usa550p6ZWdnx5gxY6hduzaNGjXC0dERHx8fNmzYwJQpU+jVqxfFihXj2bNnhIaGopRi+vTphIeH69aNjbHgDP2owU+AP4bBTy+viLoRGGacjF6L/wY/fWQ8MLZcPlBK9cYKdHDRkq1o0aIcPHiQ+vXrx+hDmDlzJleuXOHMmTO4ur78Sth8oaGhzJ07lz59+nDq1CkLlDjtsLOz49NPP41xrkSJEowePZrRo0dz584dbt26RebMmcmcOTMPHz7kyJEjNGjQgEWLFlG+/MuDiLTUFGGBl0VKqRciEjn4yR5YHDn4yXh9PobBT20xDH4KAVJ8xVQdXLRkCQkJoVu3bpw5cybGbHNfX19mzZrF0aNHkxVYAL7//nt8fX0pXLhwgvuxZEQFCxakYMGCUZ+LFy/O48eP6d27Nw0bNuTjjz9m9OjRqVhCLZJSEBZhmZ4IpdRmDAEk+rn50b5WwLsm8vACvCxSoDjoPhctycLDw2nVqhVg6HyOPkR4xowZDB061CL9I2XKlKFUqVJMmjSJUqVKJTu/jGDo0KEcO3aMhQsX8uWXX6Z2cTQiX4slf55LWpF+aqKluB07dvD06VOaN2+Os7Mzfn5+HD58GDAs4fHqq68mK39fX19++OEHevXqhb+/P0+ePKFixYoWKHnGULRoUXbt2sXSpUuZNm1aahdHwzBD39SRXujXYlqSLVu2jL59+9KhQwdy5MhBtmzZ6NixI7179+b58+dUrlw5Sfk+evSIESNGsGXLFlq1asXq1aupX78+jx8/xsXFxcK1SN9cXFzYtWsXjRs35vnz54wZM4bMmTOndrEypEQMRU4XdHDRkqxIkSJcuXKFokWL8s477+Dl5cXw4cPZtm0b//zzT5JGK+3evZu+ffvSrl07fH19yZYtW9S16F9ndLMuxL+JWVU+jvHZ1dWVXbt2MXDgQIoVK8arr75Knjx5qFy5Mj169LB2UbUokq5ee5mScWqqWdy7777L0qVLefz4cdS5Tz75hL1798boZDZXcHAwHTt2ZP78+Xz//fc6mFhQkSJF2LJlC7t376ZChQpky5aNTz/9lO+//z61i5ahRCAmj/RCt1y0JCtSpAju7u7s2LGDrl27Jju/EydOULRoUdq0aWOB0mlxKVeuXNSGbs2aNWPQoEEMHaqX6EsJhtFiGWfukW65aEl24MABzpw5Q6NGjSyS3+TJkxk+fLhF8tJMq169OlevXuXRo0epXZQMIXISpakjvdDBRUuycuXK0aFDB+rWrcvJkyeTnZ+9vT0FChRIfsE0szg4OFC9enUOHjyY2kXJMDLSazEdXLQky5UrF6tXr+azzz6jVatWhISEJCkfpRSjR4/m0KFDyZ5wqSVO5PI9mvVFjhbLKC0X3eeiJVuvXr3IkSMHly9fxtvbm9KlSycqfXBwMN9//z3+/v7kzZvXSqXU4lK/fn1mzpyZ2sXIMPRoMU1LpA4dOpAvXz4WLFiQ6LSzZ8+mZs2aOrCkAldXV27f1pu5pgSlhBfKzuSRXuiWi2YxefPmZcWKFXz++eeJGkacO3fudLMBWEp5r9z2eK953fEyO59jx45RrVo1C5RIM0d6eu1lSvoJk1qqy5w5My1btmTIkCGJSte7d2+2bt2qt/NNBUeOHKFGjRqpXYwMIaP1uejgolnUvHnz8PLy4vjx42anyZUrF2+88Qbvvfee3s43hengkrJ0cNG0JMqaNSuDBg1i/vz5pm+OZsaMGZw9e5ZFixZZqWTay4KCgjh//nysLac169DzXDQtmQYMGMDatWsTNTkva9as1KlTh3379hEYGBjjWkREBP/++6+FS6mNHTuWnj17kjVr1tQuSoah57loWjIUKlSIFi1asGzZskSly58/P+fPn6dixYpR65WFhITQs2dPWraMf6HGSEop/P392b17NwsXLiQgICBJ5c8INm3axB9//MHXX3+d2kXJMJSCFxF2Jo/0Qo8W06xiyJAhDBs2jHfffRcR834bmzhxIhMnTmTAgAG0b98eDw8PDhw4gJOTk8kVlk+cOEGXLl0ICQmhTJkyXLp0iXz58tG5c2dLVCddOXbsGP369eOPP/6IsS21Zn3p6bWXKeknTGo2pXHjxkRERLB3795Ep509ezb9+/enQoUKjBs3junTp8f76iYoKIjPP/+cli1bMm3aNO7cucPevXtxcXHhlVdeSW410p3r16/TsWNHFixYQO3atVO7OBlKRutz0S0XzSpEhJEjR/LVV18lemHLHDly0Ldv36jP27ZtiwouT58+xdHREXt7e06dOkXr1q1p1qwZhw8fpnjx4lFp7OzsCA0NtUhd0ovAwEDatm3Lhx9+qFt0qUSlo+Bhim65aFbz1ltvcfjwYc6fP5+sfESEI0eO0Lx5c4oXL06WLFkoVqwYDRo0YPLkySxfvjxGYAHw8PDg0qVLyXpuevPWW2/RokULRo4cmdpFybAyUoe+brloVpMlSxaGDRvGzJkzWbx4cZLzadGiBbt378bHx4fbt2+zZs0alixZQrZs2eJdRfnOnTtJ2rAsvTp8+DAnTpxg7dq1qV2UDEsp3eeiaRYzdOhQNmzYwK1bt5Kch4hQuXJlOnfuzIABA7h8+TKPHj1KcHl+Dw8Ppk6dGmOXzIxs0qRJjB07FkdHx9QuSgYmhEfYmTzSi/RTE80m5cmThz59+jBr1iyL5Ofk5MSoUaOYPn16gvfNmDGDChUq0Lx5cx48eGCRZ6dVR44c4ejRo/Tv3z+1i5LhKSUmj/RCBxfN6j744AMWL16Mn5+fRfIbOHAg27Zt4+bNm/HeY2dnx/fff0/Dhg2pUqUKvXv3ZurUqVy4cMEiZUgrgoOD6d27NzNnziRLliypXZwMTa8tpmkW5ubmxuDBg/nf//5nkfwiX3Vlzpw5wftEhBkzZrBhwwaaN29OQEAAjRs35sCBAxliDbOgoCAGDx5M/fr16dWrV2oXR1OGfhdTR3qhO/S1FDF27FhKly7NiRMnkr2W1ZkzZ6hZsyb58+c3ea+IUK1atahl5evWrcvrr79OlixZmDdvHo0bN05WWWxZ27ZtcXJy4vfff0/tomhG6Wk0mCm65aKliJw5c/LBBx8wZcqUZOcVGBiY5Jnlr732Gr6+vsycOZPXXnuNnDlzUqFCBbZs2ZLsctmSmzdvcv78ebZs2ZKovXU061EZrENft1y0FPPvv/9aZNb806dPk9V/ICK0a9eOGzduEBoayr59++jVqxcnTpxIdtlsxZ49e2jatCkODg6pXRQtmvT02ssUq4VJEVksIv+KyNlo5z4TEX8ROWk82saTtrWIXBKRKyIyLtr5wiKyS0R+F5HsxnNlRMTLmN8FEUn8Prtaimjfvj2bNm0iIiIiWfmEhYVZ5Idm5syZcXZ2pl27dpQuXTpdbfdrZ2dHpkz6d0dbo0eLWcZPQOs4zs9SSlUxHptfvigi9sBcoA1QHnhdRMobL48AhgOLgN7Gc99Gy7Mc8J1lq6FZSoMGDcicOTNr1qxJVj47d+6kaNGiFiqVQaNGjVixYoVF80xNWbJk4dmzZ6ldDC0aQ4e9Di7JppTaCyRlgkFN4IpSykcp9RxYBXQyXrMHIoxH5N+CCxA1xlUpdSbJhdasonXOfrTO2Y82zv3JfNmNt3r1o3KWRrTO2S9R+UQElGbPhiIcPbSBka8vJiKgdNSRXHnz5uXcuXPJzsdWZM6cWQcXG5SRhiKnRrt5mIj0AY4C7yulHr503RWIPoHBD6hl/HoOsAx4BESOrZwF7BKR/cB2YIlSKjCuB4vIQGAgQLFixfDy8kp2ZSwlODjYpsqTFPHVoevnMReujKAzTyIe4yhOiavzixE8d1SMeO85R644EWPgzcVE5BMHBwcH3n777XTz96CUonPnzmmyLunh7yA+GanPJaWDyzzgCwzzib4AvgJenjYcV+hWAEqp60DDGBeUWiIi2zC8gusEDBKRykqpWEviKqUWAAsAPD09lS0NQ/Xy8krzw2Ljq8PUjrFbKKERIZx5to9SnkVYvnw5pUqVMpl/RMBAflr9mD/WP2bk624xrtkV8k5yuQHWrVtHWFgYrq6u6eLvwcHBgcmTJ3PgwIHULk6ipYfvhbgohIh0NBrMlBStqVLqjlIqXCkVASzE8ArsZX5AkWif3YAEF6ZSSt1SSi1WSnUCXgAeliqzZh1OdlmpnqUFvXr1ok6dOvz4449mTWysXN6Ry75hhIVZ9lfANm3asGnTJl68eMGjR494+vRpsgcepCY/Pz8KFy6c2sXQXqLMONKLFA0uIuIS7WNn4Gwctx0B3EWkuIg4Aj2BjQnk2VpEHIxfFwLyAv6WK7VmLSLCiBEj2L17N99++y0dO3bEx8cnwTRVK2amZFEHft0cbNGyNGnShKCgIM6dO0eRIkXInTs39vb2fPDBBxZ9Tkq5ePEiZcuWTe1iaNHpDn3LEJGVwAGgjIj4icgAYLqInBGR00AT4D3jvYVFZDOAUuoFMAzYBlwA1iilEuppbQmcFZFTxjRjlFJ68/Q0xMPDg8OHD1OnTh1q1KjBp59+ypMnT+K939FReBJi2VZF1qxZOXnyJJUrV+bx48c8e/aMoUOHptnf/i9evEi5cuVSuxjayyzUdIlvuka06yIi3xqvnxaRasbzmUXksIicEpFzIvK5ZSoWmzVHi72ulHJRSjkopdyUUj8qpd5USlVUSlVSSnVUSt023ntLKdU2WtrNSqnSSqmSSqkvTTxntFKqjFKqsvFYbq06adbj5OTExx9/zKlTp7h69SrlypVjzZo1sV6V7T/yFO+rz+ndNafVyxQcHJxmZ7dfunRJt1xskCVaLiama0RqA7gbj4EY+rsBQoGmSqnKQBWgtYhYZb9rPcvKTF33D4332vq636dgSdI3Nzc3fvnlF/bu3cvgwYO5e/cu7777btT1z2bc56OReXB0tP7rgx49etCnTx/CwsIYNmyY1Z9nSd7e3ri7u6d2MbRoFBARYZF/t1HTNQBEJHK6RvQtXzsBS5Xht7ODIpJLRFyMv9BHvlN2MB5W6erRwUWzuq2PlyQ6TcOGDfn444+ZNWsWnTp1ws3NjeN+v3DoRBPeHvoNdoV6WqGkMbVt25ZDhw5RrVo1evbsSb58+az+TEsICwsjS5YsODs7p3ZRtOgUYF6fSj4RORrt8wLjSNdICU3XSOgeV+C2seVzDCgFzFVKHTKvAomTccbFaWlOjx49ePXVV6latSoTJkygf//+9O/fn/fffz/FdpgsWbIkzZs3588//0yR51mCn5+fXmLfRpm55P49pZRntOPlJa3ina5hzj3GEbtVMIzErSkiVhldq4OLZrMcHBz49NNP2blzJ7Nnz6Zv377MmjWLsmXLsm/fvhQrR3h4eJrZaCsiIoKHDx/yxRdfpHZRtLhYpkPfnOkaJu8xTjb3Iu5lupJNBxfN5lWqVAlPT08qVqyInZ0dHh4enD0b1yh2y1NKcezYsaj9YGzd3bt3sbe3J2dO6w940BLLdGe+mUORzZmusRHoYxw1Vht4pJS6LSL5RSQXgIhkAZoDFy1WxWh0n4uWJhQrVgxfX1/AsCdL586dqV69Os2aNUt23uHh4Vy6dIlTp07h6OjI0qVLqVmzJmXLluXPP/8kZ86clChRItnPSQk3b97E0dExtYuhxccCXedKqRciEjldwx5YrJQ6JyKDjdfnA5uBtsAVIASIXCbDBfjZ2O9ih2Gqx6aEnici2YCnSqkIESkNlAW2KKXCEkqng4uWJhQvXjwquNSrV49JkyYxbdq0JAeXiIgIPvnkE7y8vDhz5gwuLi5UqVKF9u3bs2PHDt5//30GDx6Mn58fAwYMwM4ubTTyvb29dXCxVQqUZUaLYVxRfvNL5+ZH+1oB78aR7jSQ2K1g9wINRCQ3sBPDupA9gDcSSpQ2vmO0DM/V1ZVbt/57ZXzp0iUaNGiQ5Pw2bdrEn3/+ybRp0/D39+fy5csErofn98K580so5e7VYv6kH/npp5/45v35pjO0AU+ePGH8+PFpZlRbxiRmHDZHlFIhQBfgO6VUZwzzaxKkWy5m0nNZUle2bNkICQmJ+rxt2zYWL16cpLyUUkyZMoXx48fTsGHDOO9xkiyUVOW5x22cyZuk56S0cePGUbduXT0E2ZalzcXDRETqYGipDDCeMxk7ErxBREYndF0p9bXZxdO0ZMiaNWuM4JItWzbu3buXpLx8fHy4du0anTt3TvC+HJKb3Co/EYQn6TkpycvLi99++40zZ85w6tSp1C6OFp+0GVxGAR8Bvxn7dkoAu00lMvVaLIfx8ASGYJiE4woMxoxmkaZZStasWXn69GnU50GDBjFv3rwEUsQvMDCQQoUKYW9vb/LePBQkmEdJek5KGjNmDN999x25c+dO7aJo8YmcRGnqsDFKqT1KqY4Y9tPCuJHjCFPpEgwuSqnPlVKfA/mAakqp95VS7wPVMYyb1rQUkSVLlhiLWfbs2ZMDBw5w7dq1ROd1/Phxs9fdiuAF9jb+9jgiIoJz587RvHnz1C6KZoKZkyhtiojUEZHzGBYSRkQqi4jJfgJzO/RfAZ5H+/wcKJbYQmpaUj169CjG3I2sWbPSrVs3fv311xj37d27l5MnT/LixYt489q6dStt2rQx67nhhNt8cLl16xbOzs7kyJEjtYuimRIhpg/bMxtoBdwHUEqd4qVNG+NibnBZBhwWkc9EZAJwCFiatHJqWuJdv36dokWLxjjXpEkT9uzZE/V59erV9OzZk9dff53cuXPTuHFjTp8+zebNm3Fzc6NUqVIUK1aMX3/9lVatWpn13HDCechdNmzYwJ49e3jvvfc4ePCgReuWHDdv3mTIkCHUrBnXvnuarRFl+rBFSqmbL50y2RFpVnAxLnvfD3gIBAL9lFKTE1tATUuquIJLo0aN+Pvvv4mIiOD06dMMGzaMzZs3c+HCBW7cuMGrr75Kz549mThxIhMnTmTz5s188cUXuLi4cOHCBbOe+wqlyEEuFixYwJAhQ8iUKRM9e/bkvffes0Y1E+XSpUtUrVoVT09P1qxZk9rF0UwxZ+kX2wwuN0WkLqBExFFEPsD4iiwhZgUXEXkFuAf8ZjzuG89pWoq4ceNGrOBSqFAh8ufPzxtvvEHjxo358ssvqVKlCgC5c+dm5MiRVK5cGX9/f/r06UPp0qV58803WbFiBa+99hr//PNPjPx2RKyN9dxskpOSUoHNmzdz/vx5ZsyYwcmTJ1m0aFGKLZ4ZXXBwMBcuXODChQvMnTuX/v37M2HCBJycnFK8LFpimdGZb4Md+hgGcL2LYTCXH4Z9YGJN0HyZuS+T/+S/mJoFKA5cAioktpSalhTXr1/nlVdi/z4zefJk/Pz88Pb2jrVrpIiwcOFCbty4QaZM//1Tb9KkCcuXL6dz58788ccf1Kr132rl7tVLxBlkosuVKxeFChUiICAgRdbwOn/+PJs3b2br1q0cOnQIV1dXABwdHVm9erXVn69ZkG22TBKklLqHidn4cTEruCilKkb/bNwyc1BiH6ZpSRXXazGArl27Ehoayvjx46ldO/aGetmzZ6d8+dij5lu2bMnixYvp2LEjW7ZsSfTClAUKFODOnTuULl06UekS4/HjxwwZMoQ9e/bQoUMHhg8fzm+//aY77tMyy+7OnSJEZAlxhEWlVP+E0iVpGIxS6riI1EhKWk1LrOfPn3Pnzh3c3OIe/b5v3z7KlSuX6GVP2rdvz7x582jbti1jxoyJMzjFp2zZsvz6669s2rSJV155hSFDhlhk/bHw8HAOHTrExo0bWblyJW3atMHb25usWbMmO28tlZm/WZitib6wZWagM7GX+I/F3D6X0dGOD0TkF+Bu0sqpaYlz48YNChcujIODQ4zzz549Y/bs2bzxxhv069cvntQJ69KlCytXrsTX15eBAwdy6dKlqAUyE/Luu+9y5coVQkNDmTFjRqz+m6S4ePEiFStWZPDgwWTKlIn169czf/58HVjSkbQ4WkwptT7asQJ4DTC5wZi5LZfo7fAXGPpg1ie+mJqWeD4+PpQsWTLGueDgYCpWrEilSpXYsWMHFStWjCe1aU2aNKFJkyZERESwdu1aatasycyZM+nTpw8icf+mWa1aNf744w8Azpw5Q2hoaJKfD7B+/XqGDBnCtGnTkhwotTTABoNHErhjmPuYIHODy3mlVIxeThHpDiTc86lpFuDj4xNrP5WHDx8SFhbG77//brHn2NnZUbBgQXbu3Mmbb77JnDlzGDVqFN27d09wGXsfH584BxuY66uvvuK7775jy5YtVK9ePcn5aJo1iEgQhrAoxj8DgLGm0pn7kvgjM89pmsVdvXo1VnDJlCkT4eHWWVCyUqVKnDhxgvHjx7Nw4cIEZ/PfuXOHhw8fUqpUqSQ9a+/evcycOZN//vlHB5YMII2+FsuhlMoZ7c/SSimTb65MrYrcBsNuZq4i8m20SzkxvB7TNKvz8fGhRo2Y40cyZcqU4BIvyWVnZ0eHDh1o2bIlzs7OPHr0KM6l7Ldu3UpYWBgDBgxg8eLF8b5Gi8v9+/fp3bs3ixcvjhperKVjCltd3iVOxlHB8VJKHU/ouqnXYrcw7DrWETgW7XwQkPpTlLUMwc/PL9ZIMWsHl0i//fYbFSpUiHf475YtW+jatSvnz59n1qxZjB6d4C4VMUyYMIEuXbqYvc6Zlg7YYMskAV8lcE0BTRNKnGBwMS5QdkpEViildEtFSxX37t0jf/78Mc5du3aNbNmyWfW5z54946OPPmLJkiXxDjP28/Nj0qRJODs707Vr10QFlyNHjvD113pLpIzEFl97xUcp1SQ56U29FlujlHoNOCES+3+LUqpSch6uaea4e/durOCyd+9eKlWy7j+/b7/9lkqVKtG4ceM4r1+7do0zZ85Qvnx5AgMDzdofJrrLly8nua9GS6PSUHCJTkQ8MOzhlTnynFIqwcWLTb0WG2n8s33yiqZpSRMaGsqzZ89i9XfUrVuX999/n3v37lllz/j79+/z5Zdfsm3btjivX716laZNmzJ58mTy5cvHN998k+hylC1blrNnz1KwYEFLFFlLC9JgcDGuhN8YQ3DZDLQB9mFiZXxTr8VuG78cqpSKMfRMRKZhxnA0TUuOe/fukTdv3hgd5RcvXqRTp04sXbrUKoEFDDPlmzZtSsuWLfH09KRGjRqULVuWAgUKcOzYMRYuXMinn37Kq6++Sps2bXj69Cnr1ydu6lepUqWStNmZljbZ6mgwM3QDKgMnlFL9RKQgsMhUInOHIreI45zuhdSs7urVqzEWpAwPD+f1119n/Pjx9OrVy2rPLVCgAL/99hsBAQGMHj0aZ2dndu3axezZs3ny5AnLly/Hzc2NypUrU716dXbt2hVr4UxTvL29KVOmjJVqoNmktLlZ2FOlVATwQkRyAv8CJUykMdnnMgQYCpQQkdPRLuUAkr/ehaaZsHjxYnr27Bn1ef78+Tg7OzNoUMqsm5o1a1bat29P+/Yx3wwvX76cDz/8kNWrV9OwoclN+WJRSnHx4kWzt1vW0oc02nI5KiK5gIUYRg0HA4dNJTLV5/ILsAWYAoyLdj5IKfUgaeXUNPPcv3+fDRs2MHPmTAAePHjAZ599hpeXV6Lmk1ja8uXLGTt2LH/99VecKy6b459//qFQoUJWe62n2ag0GFyUUkONX84Xka1ATqXU6YTSgOk+l0fAI+B1ABEpgGG0QHYRya6UupG8Ymta/H7++Wc6duwY9QN4/fr1NGnShAoVUm8boV9++YWxY8eyY8eOJAeWu3fvMnLkSIYNG2bh0mk2LY32uYjI78Bq4Hel1DVz05m7KnIHEbkM+AJ7gGsYWjQJpcksIodF5JSInBORz43n84jIDhG5bPwzdzzpW4vIJRG5IiLjop0vLCK7ROR3EcluPFdGRLxE5KSIXBCRBWbVXrNp165do2rVqlGfV69eTY8ePVKtPH///TejRo1i+/btSQ4sAQEBNGjQgDZt2vDuuyY389PSm7S5zfHXQH3gvIisFZFuIpLZVCJzO/QnAbUBb6VUcaAZpvtcQoGmSqnKGLbFbC0itTG8XtuplHIHdhLzdRsAImIPzMUwaKA88LqIRH43jwCGYxit0Nt47ltgllKqilKqHPCdmfXSbFiBAgW4e9ews4NSij179tCqVatUKcvVq1fp3r07y5cvT1bL6eOPP6Zt27ZMmjQpVV/taalDIkwftkYptcf4aqwEsADDkvv/mkpnbnAJU0rdB+xExE4ptRtDwEioQEopFWz86GA8FNAJ+Nl4/mfg1TiS1wSuKKV8lFLPgVXGdAD2GPZzi8CwSieAC4a9nSOffcbMemk2LHpwERFy5szJ06dPU7wcgYGBtG/fngkTJtCyZcsk53P27Fk2bdrE+PHjLVg6TbM+EckCdAUGAzX472d4/GmUMt0OE5G/MASBKUA+DFGrhlKqrol09hhGF5QC5iqlxopIoFIqV7R7Hiqlcr+UrhvQWin1tvHzm0AtpdQwESkKLMPQF9RLKRUkIv2A2cB+YDuwRCkVGEd5BgIDAYoVK1Z9yZIlJuueUoKDg8mePXtqFyNZLF2H+/fv8/jxY4oXLw7AuXPnKFmyJJkzm2yRJ1lcdbh06RJPnz7F0dGRUqVKJbj8fkKuXLlCzpw5KVCggCWKGq+0/m/JFsvfpEmTY0opz+Tkkdm1iCo6yPTyQN4TRif7WZYkIquBWsBWDH0ve4xDkxNk7n4unYBnGBarfANwBiaaSqSUCgeqGIex/WZcQsAccb0vUMY8rwMxxn4qpZaIyDagtbGsg0SkslIq9KX7FmBo1uHp6aniW9YjNXh5ecW7zEhaYek6vPbaa7Rq1YrGjRtz9+5dunbtypkzZxI9nyQxXq7Dw4cPad++PQcOHMDLy4t+/fqxadOmGH1B5tizZw+TJ0/mwoULODk5WbjUMaX1f0tpvfzxSqMd+hhaKYcx9LsMAyqLyHyl1LOEEpkVXJRST156UKIopQJFxAvDD/87IuKilLotIi7E/e7ODygS7bMbJvZsVkrdAhYDi0XkLIZtOI8llEazXeHh4WzdupU5c+YAMG3aNHr27GnVwBKXXbt20aBBAypWrEjFihVxcXGhWbNmFChQgM8++yzGHJz4hIWF8cEHHzBp0iSrBxbNxqXN4NIXeIyhbxsMo4eXAd0TSmRqEmXkDmSxLmHoVsmZQNr8GPpqAo3v65oD04CNwFvAVOOfcW0leARwF5HigD/QE4h3OraItMYwSCBMRAoBeY3ptDTKzs6O8PBwnJycCAgIYPHixZw9ezbFy7F3794Yv0V369aNunXr4u3tzcCBA9m2bRvfffddvK9xwsPD6d27Ny4uLmYFIi2dS5vBpYxxYFak3SJyylSiBDv0o+089vKRI6HAYuRiLMRpDMFih1JqE4ag0sI4tLmF8XPkEOPNxue+wND82gZcANYopc4l8KyWwFljhbcBY5RSAaYqr9kuEaFEiRL4+vpy+/ZtChYsmOKtFoD9+/dTt27MrsXChQvTuHFjjh8/johQs2ZNrly5EitteHg477zzDg8ePGDNmjXxLtuvZQxC2hwthmFV/NqRH0SkFmas0GJun0uiGWdwxnoxbRx11iyO87cw7HoZ+XkzhhU4zXnWaMD8jTS0NKFEiRL4+PjQsWNH/P39efDgAXny5Emx5z99+pTz58/j6Rl332r27NlZvHgx8+fPp169eqxbt44GDRoAhr6aN954g9DQUDZu3GjVQQhaGpF2+1xqAX1EJHLS/CvABRE5g+ENVpx7X1gtuGhacpUoUYKrV6+SKVMmatSowYEDB2jXrl2KPf/Bgwc4OzuTJUuWBO8bPHgwRYsWpUePHhw/fpyCBQvStm1batSowddff02mTPrbTDNKm8GldVIS6Xa6ZrMeP35M1qxZAahXrx7//JOya6Xa2dkREWHee4o2bdrQt29fBg4cyOHDh/n333+ZPXu2DixaTBaaoR/fCibRrouIfGu8flpEqhnPFxGR3caVTM6JyMjYub9UZKWuJ3TEl04HF81m7dmzh0aNGgGG4LJ9+3bCwsJS7PmPHj3CnHlgABEREZw8eZJSpUrx/fffM3jwYN3HosUSuadLQofJPBJewSRSG8DdeAwE5hnPvwDeN65kUht4N460FqH/9Ws2yd/fn8DAwKg1vBo3bkyWLFmYP39+ipXh66+/ZsCAAWbd++jRI3bu3EmpUqXYuXMn/fv3t3LptDTJMi2XhFYwidQJWGpcKeUgkCtyCohS6jiAUioIw4Ap12TXKw46uGg2ac+ePTRo0CDqt38nJyfq1q3LkydPTKS0nAsXLlC/fn2z7s2dOzeenp5MmDCBnTt3kjdvXiuXTktzlNmjxfKJyNFox8CXcnIFbkb77EfsAGHyHhEphmHQ1aHkVy42/UJYs0mbNm2iefPmMc4ppVJ0sceAgACWLl1K69atTb7iCgwMxMfHh82bN+vdJbX4mdcyuWdi+Zd4VzAx9x7jivLrgVFKqcdmlSqRdMtFszmPHj1i8+bNMZbXj4iIYMuWLVSsWDHFyhEYGMjvv/9OzZo1qVevHp999hlBQUGx7rt48SJdunShY8eO1KhRI8XKp6U9luhzwbwVTOK9R0QcMASWFUqpX5NaF1N0cNFszpo1a2jatGmMXRrXr19PlixZaNOmTYqV44cffkBEKFmyJJMmTeLq1au4u7vTsWNHKlWqxKhRoxg+fDj169enXbt2fPed3ulBM8EyfS5RK5iIiCOGFUw2vnTPRgxzU8Q4AfKRccktAX4ELiilvrZAjeKlX4tpNufnn3/mww8/jHFuypQpKb4HSpcuXTh27BhdunRh1apVLF26lDNnznDx4kWKFi3K9u3befToERcuXCB//vwpVi4tjbLQZmBKqRciErmCiT2wWCl1TkQGG6/PxzABvS1wBQgB+hmT1wPeBM6IyEnjuY+Nk9YtSgcXzaZcvXoVb2/vWC2UW7duUb169RQvT7ly5Th06BB58+Zl+vTpVKpUiUqVDBOSa9WqleLl0dIuwXIz9ONawcQYVCK/VkCsrU6VUvuIuz/G4nRw0WzK2rVr6datGw4ODjHOOzg4EBoaGk8q6woMDCRPnjw4OzunyvO19CONLv+SJLrPRbMp69ato1u3bjHOzZ07l0yZMqXa8N5cuXKRJ08ehgwZkqKTOLV0yEIz9NMCHVw0m+Hr68uNGzdo2PC/veAWL17MzJkz2b17N9myZUuVcuXMmZNDhw7h5eWFl5dXqpRBSycyUHDRr8U0m/D06VN++uknXn311Rjrca1bt45Zs2ZRrFix1CsckC1bNsLDw8mdO7fpmzUtLml3VeQk0cFFswlvvvkmR44cYf369bGuvdz/khrmzJmDi4sL1apVS+2iaGmZDi6alrIcHByYMmVKrL1THBwcePr0aSqVyuDatWt88cUX7N+/Xy9GqSWLjW4GZhX6O0WzCbly5SIwMDDW+Ro1aqT4UvvRhYeHM2jQID744ANKly6dauXQ0gcLzdBPE3Rw0WxC3rx5uXPnTqzzLVu25K+//krx8ty/f5/p06fj7u6OUor3338/xcugpTPmdOano+CiX4tpNqFWrVp8++23Mc49f/6cdevWERQUZNFFKx8/fsy2bdsoVKgQrq6uhISEcP36da5fv46zszNdu3Zl165ddOrUidWrV+v1wjTLSUfBwxQdXDSb0LBhQ3r16kVoaChOTk4AfPPNNxw+fJjDhw9bdNmXixcv0qtXL2rWrIm/vz9ZsmShaNGiFC1alCZNmtClSxd++OGHGGubaVpyWXKGflqgg4tmEyIiIrC3t+fBgwe4uLgAsH37dkaPHk2BAgUs+qzq1avj7OzM6tWrcXNzi3HNy8uLxo0bW/R5mhZJIjJOdNF9LppN+Pzzz+nZs2dUYAkNDeXgwYMxJlRaSnh4OM+ePSNnzpwWz1vT4qX7XLS0rOSqyXGet7OPewyk3YX4Z71fGv+eRcpkSnh4OAsXLsTX1zfq3JkzZyhevDi5cuWy+PNOnDhBqVKldHBJZdUGzYrz/KAahZnw1Yw4r+35Y4zZ+e+/XiLea3WL+pidjyXp12KaloKuXbtGvnz5Yrz+OnbsmNVWQc6dOzd3794lIiJCz1vRUlYGCi76O0tLdRcvXqRcuXIxzp08eZKqVasmK99t27ZFjfh68eIFYNjlcu3atTx9+pRnz54lK39NSyw9z0XTUtCFCxcoW7ZsjHOOjo5RASEpnjx5QqdOnWjWrBlz586lSJEiuLi44OrqyqFDhzh16hRZs2ZNbtE1LXF0n4umpZyLFy/GmktStGhRrl+/nuQ8s2TJgogwYMAARowYgbe3N1mzZsXV1TVFd7PUtChKL/+iaSnq/PnzlC1bNkZL5ZVXXuHGjRtJztPOzo4iRYpEBagXL15QqFAhHVi0VBM5z0W/FtO0FBAeHs6ZM2cICgrC2dmZESNGcOXKFT788MNYr8oSq3PnzrRs2ZKePXvi4eHBvHnzLFRqTUsipUwf6YR+LWamP3wqxXutQ4nTZufTpsQHcZ7vMroKlpi7l/VoljjPF2ofdysgIt+DePNqVX1CvNe2Hfs8cQWLx5UrV8ifPz+nTp2iW7du7Ny5Ew8PDx4/fsyUKVOSlfe0adPo1q0bixYtolOnTsydO5fhw4dbpNyW1qbMuHivbbk0NQVLollTemqZmKKDixanTB/kSJHnnDx5kipVqnDo0CHefPNNtm/fTosWLfjoo4+4c+cOBQsWTHLeSim2bdvGunXr6NmzJ59/bpmAqFnG8R/inkfl5eXFnj96JDv/1JrLEq901mFvig4uWqq6efMmBw8eJCgoiLFjx6KUolixYnh4eHDixAlat26dpHzDw8MZPnw4Bw8e5Ny5cxQqVMjCJde0xMtIHfo6uGip6r333qNJkyZ4e3vj7+9PrVq1EBH69+/PoEGD2LNnT5K2ON69ezd79uzhwIEDeia+ZjMyUnCxeoe+iNiLyAkR2WT8/JmI+IvISePRNp50rUXkkohcEZFx0c4XFpFdIvK7iGQ3nisjIl7G/C6IyAJr10uzjFOnTnHr1i26devGoUOHqF27NgDdunUjPDwcb2/vJOV79epV6tatqwOLZjsUukPfwkYCF4Do3+WzlFIz40sgIvbAXKAF4AccEZGNSqnzwAhgOFAC6A3MB7415vm7MX1Fa1REs7wpU6Zw9OhRQkJCAFi1ahVgmPvy6NEjTp48ScuWLROdr6+vb5JaPJpmTRmpQ9+qLRcRcQPaAYsSmbQmcEUp5aOUeg6sAjoZr9kDEcYjctKCC4YgBIBS6kxyyq2lnNOnT/PHH3/wzz//8Mknn1C3bl3AsCz+n3/+yeTJk4mISPy7hD179iR7+RhNszg9Q99iZgMfAi8PPRomIn2Ao8D7SqmHL113BW5G++wH1DJ+PQdYBjwCehnPzQJ2ich+YDuwRCkVaKE6pA8f543ztONlvzjPQwjhxQtbrzzA06dPuXHjBmXKlMHBwYERI0ZEXVNK0bVrV4YMGWLWxMfnz5/z0UcfsWXLFpRSBAcHJ6nFY2uelMlLw45xrxC8d2PsFYKbtJzG692L8vnkabGu7d4+1uLl08yX0TYLE2Wld3wi0h5oq5QaKiKNgQ+UUu1FpCBwD0OM/gJwUUr1fyltd6CVUupt4+c3gZpKqXgnKYhIYaA1hhZOGaCyUir0pXsGAgMBihUrVn3JkiUWqaslBAcHkz17dqvlf/ni7bgvhIbFfd7JIcH83Mu6xDqX2DqEhIRw7do1ypcvH+f1s2fP4u7uHrUzZXzCwsK4evUqDg4OFC5cGBHBwcEBe3t7s8sSydp/D4l16cqdeK+VKRV7mLb35QDy5HbiwcPQWNdKu6eNEXO29ncA0KRJk2NKKc/k5JEjl5uq2mikyfv+3vhhsp9lC6zZcqkHdDR22GcGcorIcqVU78gbRGQhsCmOtH5AkWif3YBbCT1MKXULWAwsFpGzgAdw7KV7FgALADw9PZUt7Tho7R0Qv/x4UpznM8XTcjHVatl++PVY5xJbh8mTJ3PhwgWGDh0a5/UBAwbwxx9/xBt8Io0ZM4agoCDmzZuX7OVdbG0nyvFfx91qAdi7MfZckM8nG1ouK9fGXpdt9/aeFi2btdja34FFZaCWi9WCi1LqI+AjgGgtl94i4qKUivw1ujNwNo7kRwB3ESkO+AM9+e8VWCwi0hrYqZQKE5FCQF5jOs1GrV27lrlz57Jnz544r9++fZvAwECTS8AopVi7di0bN27U64ZpNi8jvRZLjbXFpovIGRE5DTQB3oOoIcabAZRSL4BhwDYMI83WKKXOJZBnS+CsiJwyphmjlAqwZiW0pNuxYweDBg3izz//pFSpUnHe8/fff1OvXj2Tm3lFbvi1YcMGrPWKV9MsQgERyvSRTqTIJEqllBfgZfz6zXjuuQW0jfZ5M7DZzPxHA6OTW04tZVy8eJHs2bPTokUL6tSpQ7t27Rg0aFCMe7y8vGjQoIHJvOzt7fnnn3/o0KEDPj4+fPPNNzg7O1ur6JqWPOkndpikV0XWUtzw4cO5ceMG27dvZ//+/Rw8eDDG9YCAAFavXk2PHuatL+Xi4sKePXsIDw/Hzc2N6tWrs27dOmsUXdOSJSMtua+Xf9HiZO97i6vzXK2W/8WLF6OGGr+8oOTEiRPp27cvr7zyitn5ZcuWjWXLlhEaGkr37t3x9fW1dJFTxd3KcX+LhhQPo+ji6bEv9BQIt3KhUknp9V/Ee82766cpWJKkk3T02ssUHVwyiB37/5eo+0uvi/8b2RKGDBnCiBEjGDVqVKxrmzZtYuvWrUnK197engMHDvDNN98ks4RpV2n3QmlmZFiGks4mSZqiX4tpKc7Hx4ezZ88yZMiQOK+XLFmSa9euJTrfU6dO0aZNGypXrkzx4sWTWUpNsyzDJEpl8kgvdHDRUtzSpUt544034pwcee/ePU6ePEmNGjXMzi8sLIy3336bVq1a8eqrr7JlyxZLFlfTLCfCjMMM8S3sG+26iMi3xuunRaRatGuLReRf43xAq9GvxbQUd+vWLapXrx7rvJ+fH/3796d79+7kz5/f7PyWL1/OxYsXuXTpkh4pptk0S7RMTCzsG6kN4G48agHz+G8JrZ8wLKO1NNmFSYBuuWgpLnfu3Dx8GHM5ucuXL1OtWjUaNGjA3Llzzc4rPDycqVOnMnHiRB1YNNtmzqKV5sWehBb2jdQJWKoMDgK5RMQFQCm1F4h/f3ML0S0XLcXlypWLwMDAGOdu3bpF2bJl+fTTxI36Wb9+PXny5KFJkyYWLKGmWYMyd7RYPhE5Gu3zAuPSVZESWtg3oXtcgXgWGbQ8HVy0OHl3+9RqI8Zy584dq8M+T548PHhg/i9Tfn5+TJkyhZUrV7J27Vq99IuWNpj3WuyeiYUr4/rH/nLG5txjVTq4aPHy7maduQN58uThxo0bMc7ly5cPf39/s1bE9fHxoU6dOrz11ltcvHiRAgUKWKWctuDCF+8lOo2Xl5flC2ID0spclngpi21zbM7Cvole/NfSdJ+LluLatGnD+fPn2bFjR9Q5FxcXunXrRuXKlSlZsmSCI74GDhzIuHHjmD59eroOLFo6ZJltjqMW9hURRwwL+2586Z6NQB/jqLHawKNoCwanCB1ctBSXI0cOZsyYwccffxzj/Pfff8/y5cvx8PDgzp349zHJkiULrq6WXz3gypUrhIUZ9rc5ceIEQ4YM4cqVKxZ/jpaBWaBDP76FfUVksIgMNt62GfABrgALgah9LURkJXAAKCMifiIywCJ1e4kOLlqqOHv2LLVqxeyDdHBwoE6dOuTMmZOQkJB407Zo0SJGqye57t+/z7Bhw6hTpw7nz5+ndu3atGzZkkyZMlG7dm0WLFhgOhNNM4NERJg8zKGU2qyUKq2UKqmU+tJ4br5Sar7xa6WUetd4vaJS6mi0tK8rpVyUUg5KKTel1I/WqKsOLlqqOH36dLx73Pfr149p06bh6+tLcHBwrKX0W7RowaZNmwgISP6uCtevXydfvnwALFy4EBcXFyZMmMC+ffsYMGAAderU4fDhw8l+jqYZltw340gndHDRUkXfvn354YcfCA4OjnWtadOmdO3alfr161OwYEEcHR3Jnz8/7u7ulC9fnkGDBmFvb4+Liwu3byfvNfKTJ08Aw0rMw4cP5/79+4wfP5569erRo0cPihYtyqxZs5L1DE0DEEwv/ZKeln/Ro8XMVGl03D9gegzYGW+aTyrEtYOzBtChQweOHDmCu7s7n3zyCQMHDsTR0THq+tdff83XX38NQGhoKAcOHGDq1Kns27ePO3fu4ODgABj6RlxcXJJcjvLly7Nnzx527NjBkiVLOHLkCJ988gmenp64ubklr5IaACWNf49xuTo6g23DlI6Chym65aKlCnt7eyZOnMidO3f47rvvcHd3Z+/evbHuCw8P5/XXX6dz587s37+fFi1aMH36dLJnz07lypVp3bp1ssvSsGFDvvjiC3LkyIGdnR2vvvqqDiyadVhmtFiaoIOLlmrCw8PJlCkT3t7eBAQE0KZNG0aNGsXz58+j7vH19eXw4cNky5aN3377jd9++40BAwZQvXp1njx5wqJFi1KxBpqWCLrPRdNShqOjIyEhIbz55psUK1aMNm3aMG/ePNzc3Pj444+5fPkyly9fJk+ePBQpUoRmzZpFpbWzs6Nfv36MHz8+1lIymmarLDVaLC3QwUVLVZkyZeKnn36iRYsW+Pj4sHLlSipXrsxXX31FhQoVaN++PVevXo3qf4muePHidOrUibZt28baKlnTbI8Zr8T0azFNsxw7Ozu+++47+vfvz6BBg/D09OT27dusX7+egQMHsmXLFurUqRNn2rlz5/L222/TvXt3OnfuzMGDB2O8VtM0m6HQwUXTUpqIMGzYME6fPs2NGzfw8PDg2rVrzJ49m4YNG8aZJjg4mMePH9O5c2fOnTtH3bp1eeedd8idOze1atVizJgxRKSj1wxaOqD7XDQtdbi4uLBixQo2bdrEtm3bcHd357PPPmPt2rWcP38+akLlK6+8wtixYylVqhTFihWjQIECHD16lL1793L27FlcXV05ePCgXi1Zsyl6nosWy+mv41udNvGr1mqmVatWjU2bNnHw4EE2btzIL7/8wrFjxyhcuDCjR49m8ODBfPHFFxw7dozZs2fj7e1Njhw5KFCgAM7OzhQtWpRNmzbp4GIDMtxcloSko+Bhig4umk2rXbs2tWvXBgxDl3/99VcWLVrE6NGjCQgIoGjRogwdOpQffviBXLlysXDhQh1QNNukFISno/deJujgoqUZ9vb2dO/ene7duwMQERGBiMQIJjqwaDZNt1w0zfbZ2ekuQy2N0cFF0zRNsygFROjgommaplmUAqX7XDTN5rSq8Xm817YdmZCCJdG0JFDoDn1N0zTNCnSfi6ZpmmZxOrhomqZplpW+1g4zRQcXTdO0lKCADLTWnVUnCohILhFZJyIXReSCiNQRkTwiskNELhv/zB1P2tYicklErojIuGjnC4vILhH5XUSyG8+VEREvETlpfM4Ca9ZL0zQtSfSqyBbzDbBVKVUWqAxcAMYBO5VS7sBO4+cYRMQemAu0AcoDr4tIeePlEcBwYBHQ23juW2CWUqqKUqoc8J31qqRpmpYUxuVfTB3phNWCi4jkBBoCPwIopZ4rpQKBTsDPxtt+Bl6NI3lN4IpSykcp9RxYZUwHYM9/i1NHrvXhAvhFJlZKnbFkXTRN05JNgVIRJo/0wpp9LiWAu8ASEakMHANGAgWVUrcBlFK3RaRAHGldgZvRPvsBtYxfzwGWAY+AXsZzs4BdIrIf2A4sMQayGERkIDAQoFixYnh5eSWnfhYVHBxsU+VJCmvX4aMZjeK9Zqnn6r+H1JfWy58gPUPfYnlXA4YrpQ6JyDfE8QosHnGtPqgAlFLXMbSI/rug1BIR2Qa0xtDCGSQilZVSoS/dtwBYAODp6akaN26ciOpYl5eXF7ZUnqTQdbANab0Oab38CUpHfSqmWLPPxQ/wU0odMn5ehyHY3BERFwDjn//Gk7ZItM9uwK2EHqaUuqWUWqyU6gS8ADySWX5N0zTLUcowWszUkU5YLbgopQKAmyJSxniqGXAe2Ai8ZTz3FvB7HMmPAO4iUlxEHIGexnRxMo4sczB+XQjIC/hbpCKapmmWkoFGi1l7nstwYIUxQPgA/TAEtDUiMgC4AXQHwxBjYJFSqq1S6oWIDAO2YejAX6yUOpfAc1oC34jIM+PnMcbgpmmaZiMUKjw8tQuRYqwaXJRSJwHPOC41i+PeW0DbaJ83A5vNfM5oQO+lqmma7dJL7muapmlWkY6GGpuig4umaVoKUIDSLRdN0wIDAzl79iz29vbUrl0bkbhGyGuamZTeLEzTMrSHDx/y4YcfsmrVKipUqMD9+/dxc3Njy5YtZM6cObWLp6VhGalDX1Q6GvqWGCJyNLXL8JJ8wL3ULkQy6TrYhrReB1ss/z2lVOvkZCAiWzHUzerPsgUZNrjYGhE5qpSKa2RdmqHrYBvSeh3Sevk1A2uviqxpmqZlQDq4aJqmaRang4vtSA8bnOk62Ia0Xoe0Xn4N3eeiaZqmWYFuuWiapmkWp4OLpmmaZnE6uCSRiCwWkX9F5Gy0c3lEZIeIXDb+mTvatY9E5IqIXBKRVvHkmVD6GSJyVEQaGT//JiKvRrt+SUT+F+3zehHpkoj6vCci50TkrIisFJHMCZXnpbStjc+/IiLjop0vLCK7ROR3EckuIrlE5L4Yp7qLSB0RUSLiZvzsLCIPRCRJ/y6N+a8TkYsicsGYf1qrg72InBCRTcbPaab8IlJERHYb/9+fE5GRaa0OmuXo//lJ9xOGnS+jGwfsVEq5AzuNnxGR8hj2pKlgTPO9iNjHkWd86csarzcE3jV+vR+oa7yeFwgG6kTLq47xHpNExBUYAXgqpTwwbHPQM77yvJTWHpgLtAHKA68b64sxz+HAIqC3cevpAKCc8Xpd4ERkPYDawCGV9I3EvwG2KqXKApWBC2mwDiON5Y6Ulsr/AnhfKVXOmM+7xnKkpTpoFqKDSxIppfYCD1463Qn42fj1z8Cr0c6vUkqFKqV8gStAzTiyjS+9PRCBYe27yAWu/uG/b6a6wCYgvxgUB54mck+bTEAWEckEZMWw82d85YmuJnBFKeWjlHoOrDKmi17uiATKPeulz2YFxJeJSE4MwfdHAKXUc+MPobRUBzegHYYfopHSTPmVUreVUseNXwdhCJKuaakOmuXo4GJZBZVSt8HwjQYUMJ53BW5Gu8/PeM6s9MaN0rIC+4B5xnuPAR5i2IitLnAAuITht7m6GL75zKKU8gdmYti87TbwSCm1PYH6RJdQ3eYAPwCDgeXGc1EtLqAEsJb/9vxJVLlfUgK4CywxvlZaJCLZ0lgdZgMfYvghGiktlT+KiBQDqgKH0modtOTRwSVlxLWcbqLGgCulhiulqiuldhk/hwLngGoYXwNgCDB1SeRvbsZ34J2A4kBhIJuI9DY3eVzFNZbxulKqoVKqg/E3WTD+xmlsXV1TSj0zFEGyA9WBw+aW+yWZMPy/mKeUqgo8IY7XL7ZaBxFpD/yrlDqW2LS2UP4YhTHksx4YpZR6nBbroCWfDi6WdUdEXACMf/5rPO8HFIl2nxuG107mpo/PfgyvgnIopR4CB/kvuCTmN7fmgK9S6q5SKgz41ZiHOeUxt24AKKUuA7mBDhiCIRhaYf2MZQhORLlfLoefUuqQ8fM6DMEmrdShHtBRRK5heCXUVESWp6HyYyyjA4bAskIp9avxdJqqg2YZOrhY1kbgLePXbwG/RzvfU0ScjL9puRP3b1bxpY/PP8Ag4JTx82kMrZhXMLRqzHUDqC0iWY0jcJpheF9uTnmOAO4iUtz4iq6nMV1CDmDouD4Q7fMokvGe3Ni/dFNEyhhPNQPOp5U6KKU+Ukq5KaWKGZ+/SynVO62UHwzNBgx9XheUUl9Hu5Rm6qBZkFJKH0k4gJUY+ifCMPzWNQDIi2E0zGXjn3mi3f8JcBVDv0ibaOcXYRilRULp4ylDAQyvDt6Ods4L2JaE+nwOXATOAssAp/jKg+HV2eZoadsC3sb6fWLGs8YAz4Esxs/FjPV4PZl/J1WAoxiC7AYMv9mmqToY82oMbEro34Qtlh+ob8zjNHDSeLRNS3XQh+UOvfyLpmmaZnH6tZimaZpmcTq4aJqmaRang4umaZpmcTq4aJqmaRang4umaZpmcTq4aGmaiFh8spyIdIxclVdEXo22gGJi8vASEU/Td2pa+qSDi6a9RCm1USk11fjxVQyr9Gqalgg6uGjpgnE16Bli2I/mjIj0MJ5vbGxFRO7zsiLaPiBtjef2ici38t8eKn1FZI6I1AU6AjNE5KSIlIzeIhGRfMblWhCRLCKySkROi8hqIEtq/H/QNFuRKbULoGkW0gXDDP3KQD7giIjsNV6rimEvnVsYlsypJyJHMay021Ap5SsiK1/OUCm1X0Q2Ypgtvw7AGJfiMgQIUUpVEpFKwHGL1UzT0iDdctHSi/rASqVUuFLqDrAHqGG8dlgp5acMm0edxLBMSFnARxn21wHDcj7J0RDjcvBKqdMYlkDRtAxLBxctvYi3SQGERvs6HEOLPaH7E/KC/75vMr90Ta+lpGlGOrho6cVeoIcY9qDPj6ElkdCeHheBEsZNrQB6xHNfEJAj2udrGPYLAej20vPfABARD6BSYgqvaemNDi5aevEbhldRp4BdwIcqgW2elVJPgaHAVhHZB9wBHsVx6ypgjHF3y5IYduwcIiL7MfTtRJoHZBeR0xh2k9SbVWkZml4VWcuwRCS7UirYOHpsLnBZKTUrtculaemBbrloGdk7InISw8ZqzhhGj2maZgG65aJpmqZZnG65aJqmaRang4umaZpmcTq4aJqmaRang4umaZpmcTq4aJqmaRb3f8MR26osjzeeAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import cartopy.crs as ccrs\n", "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n", "from matplotlib import colorbar, colors\n", "import cartopy.feature as cf\n", "\n", "# Draw coastlines of the Earth\n", "ax = plt.axes(projection=ccrs.PlateCarree())\n", "ax.add_feature(cf.BORDERS)\n", "#ax.coastlines() \n", "ax.add_feature(cf.COASTLINE)\n", "\n", "#adding ejes\n", "xticks=([-120,-100,-80,-60,-40,-20,0])\n", "yticks=([-75,-60,-45,-30,-15,0,15])\n", "ax.set_xticks(xticks, crs=ccrs.PlateCarree())\n", "ax.set_yticks(yticks, crs=ccrs.PlateCarree())\n", "lon_formatter = LongitudeFormatter(zero_direction_label=True,number_format='.1f')\n", "lat_formatter = LatitudeFormatter(number_format='.1f')\n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter)\n", "\n", "#adding grillas\n", "\n", "ax.gridlines(draw_labels=False, xlocs=xticks, ylocs=yticks)\n", "\n", "data_set.pvalues.where(pvalues < 0.05).plot()\n", "\n", "plt.title('nino-normal 81-10')\n", "plt.xlabel('longitud')\n", "plt.ylabel('latitud')\n", "\n", "ax.set_aspect('auto', adjustable=None)\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# ejercicio nina menos normal y significancia, 15 min" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# la nina menos normal" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEXCAYAAAB/HzlmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACHdklEQVR4nO2ddZhU1fvAP+/MBttLNywdgqSkICiKjYViY3d3d3ztQH+KCmJ3i6KiiCJKd8cCS+d2z/v7Y2Zhlzl3Z7aD83me++zOe889970T973nnDdEVbFYLBaLpSJwVbUCFovFYqm9WCNjsVgslgrDGhmLxWKxVBjWyFgsFoulwrBGxmKxWCwVhjUyFovFYqkwrJGxlBsiMkREVla1HpWNiDwsIh9UtR4WS3XEGhlLuaGqf6lqp6rWozojXh4Xkc0ikiwi00TksEL7rxeROSKSLSLvBtFfse1F5BgRWSEiGSLyh4i0Lt8rsliKxxoZyyGHiIRU4elHA5cCQ4B6wEzg/UL7twCPAxOC7M+xvYg0AL4CHvCdaw7waWkVt1hKgzUylhIhIokicruILPI9iX8qInV8+4aJSFKQbeuKyA8islNE9vr+b1HMeceKyN8i8pyv/XoROaHQ/mYi8p2I7BGRNSJyRaF9D4vIFyLygYikAGN9I4jHReQfEUkTke9FpL6IfCgiKSIyW0QSCvXxsohs8u2bKyJDSvkWtgH+VtV1qpoPfAB0Ldipql+p6jfA7mA6C9D+DGCpqn6uqlnAw0APEelcSt0tlhJjjYylNJwNHI/3hnk4MLYUbV3ARKA10ArIBMYFOG9/YCXQAHgGeEdExLfvYyAJaAacBTwpIscUOnYU8AUQD3zok40BLgSaA+3wjiom4n3qXw48VOj42UBP376PgM8LDGYJ+QRoLyIdRSQUuBj4uRT9BMNhwMKCF6qaDqz1yS2WSsEaGUtpeEVVt6jqHuB7vDffErVV1d2q+qWqZqhqKvAEcFSA825Q1bd8I4BJQFOgsYi0BI4E7lLVLFVdALyN14AUMFNVv1FVj6pm+mQTVXWtqiYDPwFrVfU3Vc0DPgd6FRysqh/4dM5T1eeBcKA0609bgb/wGstMvNNnt5Sin2CIBpIPkiUDMRV0PovFD2tkLKVhW6H/M/DezErUVkQiReRNEdngm8KaDsSLiNvnpZbm25aa+lLVDN+/0XhHL3t8xqqADXhHKAVsMui2vdD/mYbX+69LRG4TkeW+ab99QBzeEVVJeQg4AmgJ1AEeAX4XkchAB4rIT4Xel/ODOFcaEHuQLBZINbS1WCoEa2QsVcVteEcC/VU1Fhjqk4vPSy3atwUztbMFqCcihZ/QWwGbC70udbpx3/rLXXin/uqqajzeEYEUd5wDPYBPVTXJNyp6F6hLoXUZJ1T1hELvy4eB2gNLfecDQESi8E4LLnU8wmIpZ6yRsVQVMXhHC/tEpB5F1z9KhKpuAv4BnhKROiJyOHAZB9ZeykoMkAfsBEJE5EH8Rwj78Tk8jHXYPRsYLSKNRcQlIhcCocAa37EhvrUeN+D2XY+jN1yA9l8D3UTkTF+bB4FFqrqiBNdusZQJa2QsVcVLQASwC/iXsi9+nwsk4B3VfA08pKq/lrHPAqbgXbNZhXcaLgvz9BsiEgbUx3tNJv6HdzF+AbAP73rMmaq6z7f/frzG927gAt//9xejm2N7Vd0JnIl3vWsvXseJMcVeqcVSzogtWmaxlB8iciRwnaqeW9W6WCzVAWtkLBaLxVJh2Okyi8VisVQY1shYLBaLpcKwRsZisVgsFUZVJgqsco4//njdtWtXVauxn5ycHMLCwiqkb1Vl+/btbNu2DRGhUaNG1KtXj71797Jnzx7at2/P4sWLadeuHfHx8cbj582bR+/evTmQyaVyr6GyqOnXUNP1h+KvYfv27ezatYuIiAhSUlLweDwUXltu3LgxLVocSIO3atUqYmNjadKkSZl0mjt37hRVPb5MnRRCRFq3IzJxLRkhviwWtRNVPWS3Pn36aHXijz/+qPBzeDweXbFihV500UXavHlzjY+PV0ATEhK0bdu2unfvXuNxqampGhERoR6Pp9j+K+MaKpqafg01XX/V4q/h3HPP1bCwMA0JCdFevXrphAkT9KefftLbbrtNx48fr3l5eUXar1mzRlu2bKkzZswok07AHC3H+08XorUhYXoMDbQ8+61u2yE9kjkUERE6derEpEmTAO8TY3h4OJGRkfzxxx/GUQxAdHQ0YWFh7N27l3r16lWavh6PB5fLzupaDtC7d2/i4uI4/vjj2bJlC3PnziU8PJzw8HC2bNnCs88+S0REBCNHjqRTp040aNCAkSNHsmDBAgYNGlTV6gPeUUwjwjieRvzEDkTErbV0NGN/vYc4YWFhJCUlkZ2dzauvvor3gc2fdevWkZaWVqm63XXXXURFRXH33Xfvl61du7ZSdbBUP3r27Mknn3zCa6+9xp9//kmHDh1o2rQpUVFRZGVl8cADD7Bs2TKGDx9Oy5YtiY+P5+2332b58uX88ccfgPfhaty4cZx22mkkJiYGPGd6enq5XkMXohN7EUckbppRh2NokFeuJ6hOVPVQqiq3Q3G6zInt27frYYcdph999JFx//jx4/WCCy4I2E95XENubq4+9NBD2qlTJ/3nn3/U7XZrSkqKTpw4UQH9+++/y3yO4qjp0001XX/V4q8hLS1N27Vrpy+++KLfvr/++kvbtGmjqqo5OTn633//aUZGhj766KMaEhKiTZo00RtvvFG7deumI0aM0BtvvFGPOeaYYnXJz8/Xs846q9ymy4DWjQjTK2mlV9FaL6SFNiBMAXd59F/dNjuSsQDQqFEj3nrrLW666Sb+/dc/I0p6ejqhoaEVrsemTZsYNmwYf//9Nx07duSoo45iwIABxMTE8NVXX9G/f38ee+wxpk6dypYtWypcH0v1IyoqiokTJ/Lcc8/xxRdfkJ2dzbp163j88cc588wz6dTJW4EhNDSUfv36ERERwQMPPEBubi4zZ84kLi6OG2+8kV9//ZVnnnmGxMTE/dPHJqZMmcLy5cvLTf+CUYz48qt6RzPhtXY0Y42MZT8DBw5k0qRJjBo1iuuuu47Zs2ezadMmMjIy+OabbzjuuOPK/ZyLFi1iwoQJdOrUiRNPPJG+ffty6qmn8sADD/D777/Tvn17brjhBh5++GFmz57NSSedRFxcHI899hi9e/dm0aJF5a6TpfozZMgQHnnkEV566SVGjhzJyJEjWbNmDR9//DHff/+943EJCQk8+uijXHGFt3BqeHg4TzzxBA8//LDjMWvXrqVbt27loreItN5NDq2JKCLvQRwLSUFE3OVyomqEXfi3FOGEE06gRYsWTJ48me+//56UlBTCwsLo0qUL3333HWPGlE9+RVXlscce44033qBTp05cddVVdOzYkRYtWuByuTjhhBO4//77ueeee7j22ms577zz+PHHH+nVq9d+F+pPP/2U4447jnnz5tGsWbOA50tPTyc5OZn09HTy8vLIyMjA4/Hw+eefk56ezksvvVTjXX8PJS677DLGjh3LFVdcwbJly3j44YdJSEgocT/ff/89iYmJZGVlUaeOf7HTF198kffff59PP/20zDp3ITqxFRH7RzEFFIxmehCbR+lKSFRfqnq+rio3uyZj5sorr9QTTjhBc3JyND09XT/++GM99thjNTY2Vnft2lXsscFewwcffKCHHXaYbt26tYg8KytLO3furJMmTdK0tDQF9MYbb3Ts56STTtK+ffvqCSecoIMHD9ZWrVppTEyMvvvuu/vbLFiwQMPCwjQyMlKbNm2q9evXV7z1ZbRevXp69tlnK6C7d+8u0TVUV2q6/qolv4Z7771Xr7rqqlKda/r06QrokiVLisjuuusu3bBhg7Zu3VpXrFhR5jUZDlqLOXirrWszdiRj8aNu3bq0bNmSzZs3k5uby5gxYxgzZgzXX389V111FZ999lmZ3Yr//PNPrrnmGr8Aufnz5xMeHs5FF13EK6+8AsD69esd+xk3bhwrV64kPz+fqKgoWrZsSVpaGqeeeio//PADPXr0YNKkSdx+++088cQTAMyePZtBgwbxySefcNZZZ9GnTx+++uoroqOLK/Bpqc6cddZZnHbaaezatYsGDYoWLF27di3Lly/H7XYzfPhwv9HKkCFDaNOmDcOHD+fYY4+lbt26jB8/nq5du/K///2PunXrMmrUqDLr6DSKKaBgNLOLnNHAJ2U+YTXBGpkSkLfZvPiXO9dctiT5qMuMcqfbs0eVjMwsQ3uzW7Er21xF1xMWZZRnq/nMO9KLrje273EEd1x3BQ889Ah48gjvdQkSGoF68slZMYPQxt1xNe9njPx/9vrjOefl5xFX0a+WuIpONe+e+gsxq6MZMTqliPzPOQtp2a4jSdt3ce999/HrH9O5/JKL+PbHnxgy9ChSczxF+41pQOe+DQhzH9Alol5jvv/1D37/7VdmzF3Axbc/yKBjjuf3NTu9DeomcPYFF3PueefhDgnhrXcmcOPtd7M5JZsF23YjWbl8vWRrkfNsS8s2vnc5+R6jHODYdubqzO1izDeZTDVPx0elbzfK8/4zrz3kRXVjR7K/y21Wvvl7FBVq/l7ke0qWoT0m3Hk5wZ1tdn9Xt9mZRPNyyN250V8uZl07de7MmHPP5bBu3fj+++/p3r07eXl53HbdlXz9wxSO6HU4SVu30a93T/7vuScBCG3cZv/xDRs25Pbbbwe87s1//PEHjRs35s8//+SCCy7g0Ucf5cknn3S8vmDYRjZDKD7G7DBiWETqBVgjY6nNHHXMcXz07RROHNoPXCHkrPyekJYDcMe1wt2wK3kb/4bQSNyNuxc5Tj155GfsZsc33h9rZIejCW/WjdB6bYo8u+XsXENe2g7cEfF+5/7z1yn0HTiYiIgImjZtRnZ2FnXqRBAVVbJRRoOGjTj73PPpfuzpxv2PP/si9zz0GBsT1/PIvXcy698ZpKWlUtumww8VRISHH36Yw7p25awzz+Tf//7jp59+YsnyVUz/8Qvat0kgJTWVrgOP5qarLqNzh3ZFjm/fvj2pqancddddfnKA++67r8xGxo04jmIKCPU+gtaq+7L1LrMYad+pM+FHXE14nysIadaX3PXTyNuxFM3YhcS1wrN9Iflb56PZqV7jsnUueUs/A1XqHnkNUZ1HIiHhJM/+gLSlPxTMSZO5cTb7/nuX6K4n4oqsW+ScGenp/Dr5exYvmEdWVhaXXnY5t918Ezu2b6dHz57lfo1R0dF06dadD776nrzcPKZP/a3cz2GpXEaffTYnnngiV1xxBffeey8P3Xkz7dskABAbE8PoUSfz3c+/+B13/fXX88EHHzj2GxkZWWbdBAhzSfFbMXkB9/cjMkFEdojIEof9w0QkWUQW+LYHy6x8GahVFtNSvohvasJdry2IkLdlLu567dCdK3A1PhzPrpV4di4BcSPRTQnpeAoSEkbKvM9QTx7hzXtQb9it7Pv7dZKz0wiNa0b6yt+oO/QGQuOa+p0vIjKSSV/9wBP33cnf0//k/IsuJrxOHfoPGIDbXXGenSEhIfTtP4B/Z/zFgMZtaW5/FTWaRx59lPbt2vHMs89y9JDBRfa1aNaUJctXAl6np4Ip3yOOOIKkpCS2bdtW5kSaTgjgDmBDXIDD7Hhh3gXGAe8V0+YvVT05WN0qEjuSsQSFhISjmXvxpG6DyHpIVCNCup5FSIeTCel0Ku5Wg/HsWY0nK5X4wVdR/9i7ydm2jKzEmcT0PIvsHSvI3buRuoOvMhoY8E559Ok/kLMvuoSnnnycqKgoxl56GV26Hlbh1zdwyFHM+vcf7r1oFDs2J5GVkVHh57RUDLGxsfTt27dIJuYChh85kA+/+Jo+R5/IySefvH+E/fTTT+PxeNi+3bz+VV64RQJugVDV6cCeClW0HLFGxhIUrphmhHY8Ec++9ZC2jfxN/5C39FM0Nw0Ji8azcxme5A2ExDQmJKYRrtAIwhp3JmPdX4TWbQV5ucQcfjqh9VoHPNc5F17C5k2b2Lp1a8C25cXAI4fy8psTCA2vQ252FreccTSrF8+vtPNbypdOnTqxYL7/57chaTMx0dHcddM1JCYm8u233wIwbdo0xo8fT48ePSpMJ5cEMV3mEoAWIjKn0HZlKU43UEQWishPIlLxT2nFYCcGLEHjjm2Oq++V5GemQEgddN968jf9Q35uBu4OJ8OOJRQe64fENsWTnU7q4m9BXGheFhAX8Dy5OTlkZWcTGRERsG15kZqawvmnn8SFtz9C87btuei2B3j6pkt5+sPvadjU/4nYUr0599xzOf/887nsjBNo2KA+AElbtnLDXQ/w/UcTGNSvL9vT8vjll1+YPn06U6dO5b777qtwvYKaLoMkLVvdmnlAa1VNE5ETgW+ADmXor0xYI1MChn+0zSh/6LRzjfJfpica5VcPbGWUi3pw5/m7MC/ZZ9bnxg+N637cM8r84HJcU/M3PNfjH+UM8NE79zu09xoSVeW/337kxduvYmT/JkxenUteVhp71i307s8LIW/bMvDk4245iOTtm2H75iJ9tYy53K//NMnBo8oH30zmuFFnFtm3cpc5G27Xhmbvs1wHt93osKJrPKsS1xIdFc22xr3Zm76XpPo9aH3MGO65aiwjH36XO48x/0bHvvaPUQ5w9A2DjfIZW83u0E4ew0c2b2SUz+xq/t7lrl/ElrRcP3nneuHG9iNe8c9VB3BMT/O05tX9WxrlocunGeUA+cm7jfKQNuZ0LeLJw5XmX1Awb735Oy85RX83/YHzjuzO6PMv5ruXHyIuOopb73iC6846gcHNIiFpGZGRkfz666+kpaXRqVOnCi8D4F2TKd7KuMvBu1FVUwr9P1lEXheRBqpaJRUa7XSZpdSICAOOPZmb/vc6Gamp3Pfmx0jIAYMlIXVwJQyHkHAkOvjF1OjoaF798Guef+gurhszivOOHcSJfTpxxekj+eu7zyriUmjXzuuquub3r/bLOo88lz2Jy0nfXbHz9JaK4eGLRtGzU1t6nnMdE7/9hWlzFnHpaSP37y/wQBs3bhy5ubmEh5uNcHniCmIrKyLSRHweDSLSz9et2cpXAnYkYykzg44fxaDjvRHRSTOKBqa6Y5pCvQ7kb51LSOuhQffZtUdvXn7/C1JTkqnXoBFxdeuybtUKHrzpahq3SqBjz37lpv/7707kwfvu5sghQ4k44mgKpvzE5aJ5jyP5+YHzGRb3fwwfeWK5ndNS8bhcLl6+82rOOHoQt73wFo3r1aVu7IERr9vt5pJLLmHKlCmOxfrKE2H/mosjORqUC/PHwDCggYgkAQ8BoQCq+gZwFnCNiOQBmcAYLfBwqAKskbFUOK66bchbV/IYlM7dexZ53aBRE8be+xTjH7yFM66+jezMDCJjYklau4olrZpzxvljCSlFOYL169Zy/U23cNudd3PTN0uBnfv3Db3leXavX8Zjd95EnTp1GHjU0SXu31K1HNX3cP57/yXOv/cZxj74PO8/fgchIQemS1evXk1oaCgLFy6s0IV/kWCmywKjquZ50gP7x+F1ca4WWCNjqXjCYyE3A/Xk+aWbKSm9jjqOxBWLmfXrD8Q1aEjavn00TWjHh2+No37DRhxzUslyTCXv28ekie/w4WdfOrap36YrL7z9PjdcdA4Dhg6jW88+bN+6hQWz/2X1uo2ExTUmtl1fYtofQUTjdsZ0O5aqxe128+6jt3Hm7Y8z8tr7eP+JOyhYGb3mmmvYsWMHxx57LJMmTeKEE06oEB2CiZOpdXn+sUbGUglo2nYIjaC8UracftVtRV7nZGcx/asP6NG3f4n7iomNpf+AgUz+4TsGDHRe+O15xADcISH0PGIAWzZtZMPaNdz6wOO88OcesndvYs/iqez48CtCY+pT7/AR1O0+osS6WCqWOuFhfPfSQzw98TP6X3AzX33fgYEDB+J2u3n00UcZMWIEo0ePrrBYmYKI/+II9dS+BxRrZCwVj+YjYTF+STLLiz+++ICe/QfRoHHJI7VdLhevvfk2I4YOZt6cOSTHJTDiivP92qXs20duTg7nXXZ1kZFK2Px/CIttwK4539F4yPlENu3AnkW/snriTaw5vS3tO3Up07VZyhe32819l59L787tOfXUU/nyyy8ZOtS7VtipUyf27t1bJBNAdnY2K1euZOnSpeVz/kDTZbVwFGyNTAmYemV3o3xDttkr5ZiODY3y8974zyi/9rBcbp6ywU8+f8VOQ2to3SLWKK8XYf5Y7//L7ILdrpHZ/dfjsFaYmZtvlAP0bteIzK9vLCLbvXcfzQedzLDLxvoZmuf+9r9egOEOGYxf/HKxn2zDlD9p1mcId3/j79765rk9jf2s3VvI5VUiGXPVjXz70ST2bJxBqGc0gzocOP/Sf/7ghKPup3Hvo3n6t9VF+rn8lC5sWbuC/0veyB33TyI0PBw4i9lTvuHKs0cxbtLH9Ojdt8gx7eqa438a/PKSUR5axzwF+K3/WwFA621JjLrzQz957zPPM7bvkBBvlLsdnrqf/dNceuGZvs6BtqFRMUZ56m+fmw9oOQhR/wzXE84wJ6ns0cPs5h0WZV6jawp88sknnHnmmbz88suMGTOGRYsWceSRRyIi7Nixg5deeok33niDxo0bl0tlTO+aTPFtAu2viVgXZkuFUzcuFkXJTU8J3LgU5KXvIyy6buCGBlKS9/HFe28z8ZVnufzWu8lISyEvp2gcy5IZU2k96HiOuNQcrJeTnU1M/QY+A+PliJGn8dgL47jmgrPZmLiuVLpZKpZjjjmGH374gRdffJEjjjiCH3/8EVXlkksu2T+qmTt3LsuXL+fzzx2MYQlxS+CttmGNjKXCWbBsJWFRcYTFlM4QBCI0tgEZuzYb923buoXbr72Cd15/lXmz/sPj8bB7506+/fg97r/uMs48shcLZ/3LI6+8xZARx3PN8xPYt2MbqXsOxK1tWLaIxl2dXabrNmzC7i1J5B5knIYdO5KhxxzHPTdew/Ili8rnYi3lSv/+/Zk1axZ33303c+fOZe/evXTu3Jk1a9bwf//3f7Rp0yZwJ0HiInBamdAAazY1ETtdZqlwmjVuiHo8bPrrG1oOOa3c+49J6MnOBX/QfNCpyEEVO7dv3cK3X3zK1Ck/0aRZMzIzMsjLy+PwvgPoN3Q4dzz+LHF1DxSSatW5OyzYwobli+g2+IC7cm6GuUAcQFzDxrQ9vA9/fj6JEecfSDOVm5vLgrmz6NjlMJ55+D4mfmEuMmapWkSE0aNHM3r06Io+k12TsVgqAkHIz80mvm3Z57VNxHUewt6FP7J93m806XtckX09evflkWdeZOmiBTz+/CssW7KI1ORk2vceaOxr+X/T6VpH6Dpw2H7ZCZfdxMfPP0ZoZAyNOvc2Hjd41Ln8PPHVIkbm8w/epWmz5jz7+tsc1bMT27Zspkmz5mW/YEuNxK7JWCwVxL3PvEKz/icQ07x9hfTvyckgLyMVd6g5B1t2ViZ1IiIQEQ7r3oMBRzpnHtiydiXhEVG4Co2Iug0+mo7Hn8ffL92KJz/PeNz2DWs5fOgBA+fJz+fNl5/n9gcfIzw8nIFDhjFj2u+lvEJLbSCYomW1cbrMGhlLhbF6/QaeePUtfpn+D+1OGFth59nyx0RCo+Np0P1I4/4mzVuweZN/vXgTOzatJyQsrIhMRGg37HQi6jZk74aVRfZ58r2edstmTqNZu4775Svn/EOjxk047PCeABw57Bhm/GmNzKFMQYLMstaTqWnY6bISsOXJ24zythdeZJS3SuhrlH93g3mqZuGc/7i/t//TfthxJcvSnbjPnOX3qXZmV+ikxmbX04gQ5y/8iw6ux4QqqIfc3FxGXXYTQ/r14rPXn+XP+ARj83U7zVmV/8CcMHbZT1/4yTSvLhH5G9g681taHXWm3/6evftyz03XMaJ/T3r2OYJnXxvPf0n7jP2POHIQeZnpDG1dr4jcLQLnXcr8H95k1Mvv89DoYYSF1+GbbUl079qJHes30su1m92T3+Smqy7l+FvHMWLfPnac6s3Y3iknm2eXLGLrKSNp+v0U47lDTrrWKN89/hGj/JoLHzPK/5i6nu4nn+0nv+7Ezsb2k/5JNMonHFvfKM+PNWcRn7nVudDbkj1mt+0LzzV77GV8+D5zXnjOT56Z7+/WDND9MnO6n53zVznqVBW4AhgRVzkFLFcn7EjGUmIcDUwhNm7ZRkZWFm88eT8Dex9esQqJi7CoONb9/B6mPIBNm7dg4mdfo6p8+8Wn5Ob6p8Ev4KQzzyYtNcWvTXryPsIiIknetZ0f336Rvdu3MPqWB9m8dDa3XHMFTRs35PHnX+aF18fTuf8w6terx6mNGu8/vlFYOHVDQ1mUWjFu3Jbqj7gEd5gr4FbbsCMZS4Xw8Itv4PF4yj2PV/6uFejedd5VVARE0OxU0iLCyUnZTcbOJKIa+dc7eeaRBzjt7HO54rqbCDtoOqwwkZFRhIWF8+2nH3LWBWPJSE9j9j9/88IjDxDXsDGh4RGsX7qA6Ph6tO7Sg7jYWM4+7RTOPOVEsrKy2b5zF1nZ2XRq35ZZp11YpO+zmzTjoTWrWP3sU1x/xz3l+r5YagbiDmRErJGxWAKyfedufv9nFsMGHkFOTi5hYSXPjOyEZuxCohoiMc0BBVUQFz3POJP/nr2SHQun0+ZYb1qY/Nxsfvr+G7786H02J23i0quvp04Q1TZbJrTh6euuZdaM6cz9dwbNW7bmhEtuoM+Ikx2NptvtJioqkrZR5qkkgJMaNqJ+aCg/zJtTqmu31HAEJID7mFRZQv6Ko9qZTRE5XkRWisgaEbnbsF9E5BXf/kUi0rvQvjEiMk9Ebq5UpS0AZGeks33XHnqfdC6jTzqWlNQ0+o+6gMl//I3HY55LLykSEo5nzxo0dQuumOa4YlvgimlGbKvORDVuzfpfPiBl0yqyU/cy69mr+Gji25w46gx+nTmPqGhz+pyDCQsP5/3vf+OIQUO454lnee+7X+h77CnlMirbm5uLx5AuxXJo4HJLwK22Ua1GMiLiBl4DjgWSgNki8p2qLivU7AS89ao74K2y+n++vwBjgCOAD0UkWlXTKk15C9PefZ5OpxzFDxNfoddhnVFVPvr2Jy665X4Gnb+NQWeO3b9mUpobtsfjAVcI5GXh2b0Kd7MDjhXicjH4wQ/ZNncq/z13FSHhkdTv0o/3vvyiVOeq36Ahoy+8pMTHFUdSViZvbNrA66++Ua79WmoGIoI7tPgksW6pfQ8g1crIAP2ANaq6DkBEPgFGAYWNzCjgPV+lt39FJF5EmqrqVg7kklfKK6+8JWhEhNjoaHod1nn/6/NPO5HDOrZj8NlXMGeyN/9Tbk425z08jqbtzN5OTqTu2o5n5zLc7U9A3OZ1lSZ9jqFxr+H7I/+rS22XPFUeWL2Ksc1b0qtv+VX1tNQggpouqx7f1/KkuhmZ5sCmQq+TODBKKa5Nc2Ar8BUwB/hAVZ3zgJSS9b+sMMpjWv5slKdues8or9vRf2EaQGI6E/7+g37y5LXmvFxNh5pdpA8zSiG/mTkPU/Psv41yl0Pm3Cc6wNaGPYvI9u7dwxv//ELGRWO4bObBR3Si6y2fkLVzI3kZyeSlJ/PmLRcR1eowJCaB2O7+U1FTnvQvHLV5Uy6TGtTn/e8n+u0bGWr2eNv76aNG+TU9+hjl6x/+DNfgkwj//LUi8mPDzD8Vz1PjjXKA9qccqLLo8SjN92zi3/wsFrZqTbwrhDhXCE1cYbQJ8a4TvZlqdj3PzDdP1F8/f41R3uXCq5l1jv86WF6C+fM8p405SHZTfpRR3jw30ygfGGbO8g0wwL3WKHclmjOJR7ZuQd/Xn/GT93EoeufZnmiUN42vZ5RXCSIBF/7FU+1WMMqMVGHpZz9EZDQwUlUv972+EOinqjcUavMj8JSq/u17PRW4U1XnBnmOK4ErARISEvpMnOh/w3IidbnZyEQ2MM/15+eYo8Pd4ean8Ax3HSJy/WMN8rNzjO1DY8w3ASck1FyS4OB8X/txqP+SG+K/eL5r504yMzKIq1efVI//jSAzq+h74cnLJmvXJsQdhrhDCIlpROHBZ8fmcX59eDwe1qxaSXRsHPUbFa0dEyvm9yg/ZY9R7oowv3c5u/eQHR1HeFryQQeYnzDDmjunt8/bXvThwKNKalYOKfsyyEfJR0lXD63ddchRD/ke8/DbaQKlUT2zE0Ne/YZEG1xhNSzS3JHDPSBXzd+LUJe5veQ7u4ZrrtmAOtUYSsvxEF3HZFDMn4NT/+SZvxcAEmcuD+DE8OHD56qq+ckuCDpFR+vb3Ysv77wvN5dT586eoqrHl/Y81Y3qNpJJAgo/5rcAtpSijSOqOh4YD9C3b18dNmxY0Mr9cctdRvnhl5nTlKRu2mGUO41kZsd0pue2+X7yko5knAhpbB7JuOqY07E4jWQOHsXk5+fz+OjTOffCi0n1hDAty7942JKVRQNBVcNY+NzDNDnlKXb9NY7IVn2I7Xbi/v1TnjRfW3J0Uy49tj/v/j6XmLj4/fKhTiOZn/4wymOcRjLf/Uji4JNImPFjEbnbYSTTspiRzO6X/QNHAX543quTC7hz30qGhMUzNzeVPFXaSAQdJYrWROwP3HMcyZxnHrPuuvBqhrTwNyh5DsHB4jAySXIayYSZjYk7ZatRDqBbHUYyUeYHtL+SMhja3t8IaAlHMnnbnUdXEcP8A1YrGtchOJKpblc0G+ggIm1EJAzvQv53B7X5DrjI52U2AEj2rcdYqohH7rubffv2ctQxwZcc9uRkgCoSEkb9QZeSvPBrkhd9ZwymLExcvQZ06N6TlYvmlVXtakEowob8LB6LacP5rmY0Ipx/Pft417OZuZ5kstS5QJylZiEiiDvAVt3uyOVAtRrJqGqeiFwPTAHcwARVXSoiV/v2vwFMBk4E1gAZQPm6AFlKjNvt5uTTziA21n+Ky4ld838htm0v3BGxuCNiaXrqE2z/6XHCG7anTtOuxR4bXieCvGKi9msSZ0c0ondoDJEuNzESQi+JpRexbNNsFmgKEz2baUckg6iH2/qy1GwE3GEBvMuomBLlVUm1MjIAqjoZryEpLHuj0P8KXFfZelmcad+xE3NnmUtKm0hNXMS2vz+h44VPk+5bqgmJaURczzNIXvB1QCOzd+cO4uubS1vXNI4MjzfKm0g4x0tD0jWfnzw7mc0+BlAxRd8slUQw3mVBxMmIyATgZGCHqvrVzxCvF83LeB/GM4CxqlplQ/9qZ2QsNY9lSxYRFRPN3Fn/kZOeAm7/NZkCMrevZ90XT9DmjLuJaNyG9M379u+Lan8k++Z9QerK31m3pj1ff/Ihu3fu5PA+fUjZt4/zLrkc1RA2b1hH89blV7GwOhMlbo6mAZ+whcOIIRwXuXiIsj/dGocguAKk8g+UQNPHu8A4wOy+WnwsYaVjv6klIKqxeSF0+yyz11lEo3ij/M/7vzHK3Q/fwKovZ/vJw2OdvMLMDyehUWavo+a9hhnlOSv8zwmwe/YCoxze47GHD2QS3kga/7KXT8e/xVMvPscr7fYQFlr0q7X+qtFMn/orj7zzBM88/wInn+GtQnjWC38Vaec+6SZ2zfmWk0ccS52mh+GOqs/Ps75E83N4+eXX+WTCOCLCwzj18KLOE9dGmRdxR7U2T+F1u8DsdfbiW/MY1Gk4X79V9L116qdO/TuMcoCFE8yju+Rcs79Yszrm9Dsx+S7ysjzMdO1hiycLF0JdCWXeR8m0IYJ4QpFCU2lnnLCLDVN+9eun5XnmjNc4ZGNokZNllGeuWmLWc4i/23kB2tCcbievfoK5/dbZ5MU385eHmJ1UpG4Lozyzq4NHHRA4wVA5I4FzlwXObQaqOl1EEoppUlwsYaVjjYylxBQ2MAAdiSaKEFaRBuJ11S0gMzuHxz/4nvenP0jL1gnc++hTjDx5lGPfMW16E9OmN7s3+f8e9s39hKuvuYa2bduW38XUABTlCHccbdwRtHc19ToLeDKZlZPKZHbgRoghZL9bdI89KWxJ3MrQhKZVrbqlECIEzLLscnAbLyHFxRJWOtbIWMqFJoQzkz00b1CXOmEHYhb+98lkFq1L4v2vJ9O2fcnq4hTGk5dN5sa5XHDRaPbt3VcOGtcc6oibU8KKrkG1dUcSSiiDqMsucsjEQwiCG6FBZB1umTqbfi0act/Q3tSNMI+ELZVNEMGY3v0tRKRwFtXxvtCL4E/kT5UFRFojYykzuXj4lZ2kkUfd6EjAa2RWJW3j7cnTmfX6g+SXwcAApC79EVDq1a1L/XrVKIq7ihGEhhQ1InF1wvjpwhN4/p9FnPD+ZJ46th/D2zSvIg0t+xECJsD0xUUnlTEYs0yxhOVNsUZGRM4Ioo8sn0eY5RAkH2UyOwhB8KBFpsqe/PBHbh09kmb144uM3UtDSGQ9PNlpvP/Bhzz68MNl7K32ExUWyoPD+nBih1Zc++NfPHb0EVxe1Uod4gSVIDO/XFyYvwOu9+V+7E8VxxIGGsm8BXxL8ckmh3KQy7Hl0GE9GQhQj1AyyWf7nmQ2huyhZcO6TFu4gkfGOq+/BEN+dhrZW5eRuvwXXOExbNu2jY6dOpaP8ocAfZs3ZMJpw7j0m2k0GT6Lk4fY5JxVRvm5MH8MDAMaiEgS8BAQCtUzljCQkflJVS8troGIfFCO+lhqGKtIowvRxBFKOG7yPcoZD73KqEG9qBcTRatG5jrxgfDkZpE8/zMyE2cR1qgjsYePIqxeAl/dNZTevXuV81XUbro1qsfbpx7FlY+P49W7rub04QOrTXbqQ42AazJOeQQLoarnBthfrWIJizUyqnpBoA6CaVNb6PPmi+YdqbuMYok0u722utycK+qvxH30f+0h/x0h5oSaaTOmGOUhkWY3z7yt68ztm7czyuOTdxvlz390Obed9zYAobjIxkMjwmlEOPXzlabpuXzz/XSe7tqV+U9/CEDvu8zpUeZdM8hP9vfs+Yz97HnOOPJInv7rM2JjD2TqTbzsTFYbezLz7YZko3zEKPMI69Xr7+XvJWt4devUIvLsqR8a2xd3U+h9rflzO6aHX/wcAIlfmT/PbQu2G+VfzTfn5RKXy8+NvU+7FrzSP527nxzHw//7P0a0akJsWCjd68cz+vnHjf1oXGOjPKZpglGe26SLUQ7gCTE7H7jyHBJbukLwRBiCTx0KvqlDPpbI6lQgTiSgEQnGyNQ0gl74F5FBQELhY1TVKRjIUospMDAA3YnhD3bTlRhcvlnVBzt3Qgg6sKwIW7bvYNSlN/DG2+9w0smnlJfKFuDwhnX5/tRhzNiykznbd7MrM5s3F68mbsZsjht8RFWrV+vxujAXf8t15de+XHVBGRkReR9oBywACt4FxTni1HKI0JhwPCg7yKYJ3hGUuwxTMfOWrKBH107WwFQQLhGGNG/EkObeDMe9GtXjtQ+/tkamUgjChTlARoCaSLAjmb5AV61OxWcs1YIksshHaUD5xGI8Ne5trrv4nHLpyxKY/o3r87/fZuHxeHDVwqmaaoUEng6rjdNlwV7REsA5IZXlkCWWEKIIYQo7yKDsQ/2cnBw6tHEuBGYpXxpG1iEuJoqV68vqZG4JhIjgCgsNuNU2AsXJfI93WiwGWCYisyiItANU9dSKVc9S3YkjlNNpwmz28T3bOLOUg12Px8N9z7zKhs1biXAoomapGAb2PIwZ8xbTpZ017hWLBBwt1sbRZKDpsucqRQtLjcaF0J+6hONiQ0YG4bm5xIaW7Ils3cYk3v38Gxb+8gVNGzXEvwi1paI4sk93/pm/hMtHn1zVqtRugkmQeaityajqnwAi8j9VLVJ7WET+B/xZgbpVO5wyxlLP4QnQaQHcwd1St8xyLJFrIuJ0s+uxONQ71zrmcsp5Yebs0qEJvY3yV/ZdjWvdHOO+N35fzuMzV9GNoufasmKcsf1vO/4HwH/spQ45PN7PG5d+VldzvZiE4eYU/4+/fKZRrmMfM8p/35pmlP/fD+s4JT6Pl38oWi76yyOHG9sTbn7vANxx5izMYR3NcT57131ilHcdYw6gTNk81SgPbdCQZpf5h0nkb1ljbJ+4zcNHv/xDfpOiQa6Sl2Nsn1PXnFHZI87R6i6HEa6TazOAGn4/4jBQ9jjEi4ur+hQBExFcoQG8ywLsr4kEOzY71iBzzuttqdU4GRiAOrhYSRpawnx8HpT6mONKLBXLwiVLObzbYVWtRu3HN5IJtNU2ir0iEblGRBYDnUVkUaFtPbCoclS01CRCceECFpBSouM6E8Mq0smvumSxhyxz5y+gb68eVa3GIYAENjK1cE0m0BV9BJyCN3/ZKYW2PodSpL8leAQ4loYsIKVE3mZ1CaUeoSwsoXGylJ058xfSp1fPqlaj1iMCLrer2K02jmQCrckki0gq0F1VN1SSTpYaTjQhtCGClaTRC3NqHRPDqM9XbKOxnTarNLbv2cfevfvo2P7QKgRXJQS1JlN91pDKi4BmU1U9wEIRMa/2WSwGDiOG5aTiKcH0VxQhNCWcLWSTf9BCsaqS41Am2FJ6HnjjY84dfUatdJ2tjhyKazLBujI0BZb64mT2Fwq3cTIWJxoSTjhuksiiVQmrqa8gjVsTV/BCQmfcImR7PDy/JZEMTz4fYPaoK0xmTi7rd+1j4+4UhmRkEBnpXOf9UObbP2cxbf5S5s58s6pVOTQIJkGmg+dpTSZYI/NIhWpRQ3BytxSnAESnjLEObpUqLvLd/udw9IR2O0wrOdzTTS6h4Kx/TqiDe26nowjVPPO+3w/kSD6MaJaSSisi+G1Hurn9QYygIYoyNy6d1/N20iY+mj82bCXVlUvLuCja3nyr8TgNqcOi5au4+Jb7WbV+A21aNmfjlq28d/p8+vYf6Nf+qJbma5vTph5RGckc0aZo9c3v8szu391evsHxWpoMNGdbTpr8glG+Z/Veo3zuYz+b+69TMndX7T7iQJ/z5nPtC+/y9ecfE12/sXG8mR9prkDqys81y4s5tzhlQ3a6qaoiHsOankN7x9+IqY8qQkRwB4joD7S/JhKU2fTFy6zAG/kfAywviKGxHHo4GpiDaEcU28kmleDaFyAIzx1zBO3iY8jN9zC6cxtu6nsYEQ7z2VnZ2Tw//j2Ou+Aqbr/qYpKXzmDJb18RHxtDsxYtjcccyqxP3MBZ557P/736Ekf06VPV6hxSBJ4uO8SCMQsQkbOBZ4FpeB2IXhWRO1T1iwrUzVLDCcVFJ6JZTAqDMD8VO9E8Jopr+nTe//rrlRuoE+I/Apy7ZAVnXns3vbt35Y9P36FLoQXsnNxcbE7Xouzdu4/TRp/DnbfdwiknnVjV6hxaBJMg8xCeLrsPOEJVdwCISEPgN8AaGUuxdCeGL9hKb+KoQ+k9Z/JVmbdtN2Nuup+/Zy8kNDSEpg3rs3bjZp695wYuHH2G3zE9unRi1fJlNLejGcDrPHHBJZdxwnHHcc2VV1S1OoccEkyq/0N44d9VYGB87Cb4bAGWQ5hoQmhNBMtIo3cJ3JkP5tQOrahbJwzX4H40bVifjVu2c9vl51E3NpYu7ROMawq79+6jQcNGpVe+ljFt+l9s3LSJ7778rKpVOTQJwoVZDuG0Mj+LyBQRGSsiY4EfgckVp5alNtGDWJaSSl4ZovnD3C6OSWjG5Wefyt1XX8yfs+bRvnULurRPcDymeZPGfDDxbfJrYbXB0vD0s89z52234HbXvliMGoF4c6kVv9W+Z/dgF/7vAMYDhwM9gPEHJ8y0WJyoRxgNCGMV5qSUJaVxg3qMPuEYxr33ebHtPnzlKTZuSOTWa68kN9fsEXWoMH3WPDZs3MSY0WdVtSqHMAIud+CtlhH02ExVvwS+rEBdqj1Orr5OrsHqsAbh6D+i+AUhes8bjHYHcDn5czr149DeydHFQ6ija2iLNg14/qPL/eTbznuNqeykA1GEBvFss/vu8Ub5YafdDoBmu8hb9TH/+ysPcTu7fQ46/wH+nvgAfQYMJr59L6KbtqVel35Mvc7frRmgXlQY7iyhXlRR9/CR7eoa2y/bYHY7Bnj+jXeN8sdeON187g7bjfJ2bc3nnvHVCqM8InETs57+3/7XaXl5jJ09jxdee5FwTzZkF83SrSFmV3h3nkM2b6fMycUtWju58zt9diJGV3/HcAGn01anm7YIEqAEhoQcoi7MInKGiKwWkWQRSRGRVBGxSaYOUUoTe9CEcBoRzmJSy0eJIO817rBwul/2BK1HXIA7PIIdC/5g3ivXs3XbtvLRo5qT6/HwzMrV9K9XlzNOsd5kVYpwSI5kgp0AfAY4VVXjVDVWVWNUNbYiFbPUPvoRz6ISJs50QtN3ILEtih3FFOAKCaXh4UNoM/JiDr/iKRr3HsHh/QZx6ugxrF2/vsy6VFdUlSvmLmBndjY32txk1YBgpsuCuyWLyPEislJE1ojI3Yb9w3yDggW+7cFyv5wgCdbIbFfV5RWqiaXWE0co7Ykql0zLmp/jnPEgAG2OH8v6ZYs4+qijGDz8OA7r05/TzzmfFatWBz64BrEuPYPk3Fxe79WDcLvYX+WICBISWvwWxEOTiLiB1/DW9OoKnCsiXQ1N/1LVnr7t0fK9muAJdk1mjoh8CnwD7J+oVdWvKkIpS+0lFw/RlMO8sycPXKV394yOjubm66/h7DNPJzUtjSm//saQESN55Jt/y65bNWH23r0Mql8PcVqjs1Q+gabDgpsu6wesUdV1ACLyCTAKWFZG7SqEYEcysUAGcBwHasoELAguIhNEZIeILCkke1hENhcaxhknip2GgyLSTER+F5FvRSTaJ+skItN8/S0XEfOqsaXKaUYdtpBV9o7UU/xCc7D6NG1Cpw7tufHaq4mNiSFt356y61ZN8CiE1UKX2BqLL0Fm8ZsAtBCROYW2Kw/qqTmwqdDrJJ/sYAaKyEIR+UlEqqz0aVCPgqp6SXH7ReQeVX3KsOtdYBzw3kHyF1X1uWL6KxgOHov3DZwtIt+p6jLgRuAGoC1wAfAG8Iqvz299x3cP5roslU87oviPvewkm4Y413cvDlVFM3YiceUbyd+3dy8WTPuZTscNLdd+q4pwt8uWR6huBDeSSVLV44tpZRqaHuwKMw9orappvgf5b4AOQetZjpRXeOlowM/IqOp0EUkoRX/FDQfdgMe3FbzZTfEao4LzLi7FOcudEs9SCLgNB5ncmsHctjJQl9vRlVTiGxFyxAl+8tuuXrD//25rmvDEjIX83/GD6FbP7D+SG2b+MfYZfT57l89k49Y/6H7Fg7h87rcnHNHC2H7c6z8a5dETJ/rJ8rdu5jhXHaLDhtOhZXzRnZPHGfvpepn/tRbw2psjjfLsWVOM8iPeP/iB1dd+ujlyoN4P5jUkT66H9O0ZkJpHekaO938gf/6vxvYh3c1GNT/GnC2hxNnIizumhJ6KTuECeR7zuR3EgGOy8opDXEho8euIgfb7SAIKP2G1ALYUbqCqKYX+nywir4tIA1XdFbzC5UN5GZmS3u2uF5GLgDnAbap6cLCBaTjY3/f/OOB9IBk4zyd7EfhdRP4BfgEmquo+o6LeoeeVAAkJCUybNi1opSs62WJ6Whr//jvTcGKHA8rJxpSnqUpLz+Cf2XP95DkDD8yKdhkI/3d2DkmpGeRHRxAX7v/D0iVzjP1f3DaD/OYdye57G5GN88CX4TkuK9HY/r6TTbMIkJ9T/6ATKpp5GE2aNSc3K4Oty4pewx53yUdNrhVJRrnHoS/XMnPxWU+4uYaO3HutuX2jBmReeym98vPp6Mkn03fjmpllTusjS9YZ5ereaJSXxzTlgZOYv9xp6en8O9PwWyhZN8V6urtdVfCQFmj6Mrj3djbQQUTaAJuBMRy4F3q7EWmC12FLRaQf3qWR3aXQuMyUl5Epyd33/4DHfMc8BjwPXHpQG8fhoK8MdJFHL1WdKCJTgOPxjniuEpEequoXTaaq4/FmL6Bv3746bNiwoBXPysw0yp2erkrKzJkzGTDAP0iwokcyJe2muCfWmTP/YdAR/unjN37+f34y98693PbbLLo1iOeBQYcTU6iWRu5jk4z9PzpxDltn/ERK4mI6nf/wfrnjSOYH80hmX+ISP1neut948qmH6NGgIU27Fr2Gjv++beynOMI7l2wkE9b1cHP76WaD+8uTHxvl7geuJ+L1CcxJ2cvU5N083LI9AANfvNrYPqRbD6O8PEcyjrWMHEYyM/+bxYCB5oBZE6UZycRFVfJYRiSI6bLARkZV80TkemAK3pmdCaq6VESu9u1/AzgLuEZE8oBMYIxWUUry8nokCfo2parbVTXfV9b5LbxTYwcTcDho6HeLqk5Q1VF4H2/NFaMs1YZuDevyxaijiAwN4fSvpzFnW3APWmFxDclLd460Ly0S25wZf/xW7v1WFXvycomvhRHkNZZgXJiD/LxUdbKqdlTVdqr6hE/2hs/AoKrjVPUwVe2hqgNU9Z8KvLJiKS8jU3wSqUKISNNCL08H/B8pCw0HRSQM73Dwu2L6PF5EQn3/NwHq4x1GWqo5kaEhPDy4B/cN7M4tv8/mmf+WkJZTfJ6xel0Gk528i7RN5rQqpcUV25Jpv0xm2aIFDGzfjCFdW3NMz458/v6Ecj1PZbEpO4tWYXWqWg1LIQInyKx98UzBppV5RkRiRSRURKaKyC4RuaBgv6o+6XDcx8BMoJOIJInIZcAzIrJYRBYBw4FbfG2bichkX395QMFwcDnwmaouLUbF44AlIrLQd8wdqnpo5A2pJQxv1YSvTx/G3uwcTvryd77/4hM8Tp5RLhdhMXXJSSnfNUwJi+avZRvo0r0Hvy9ew4//LKR7776E16n0JeJyYVNOJi3DrZGpPpRfxH9NItg1meNU9U4ROR3vVNZo4A/gg+IOUtVzDeJ3HNpuAU4s9HoyQZYTUNVbAXPxd0uNoUFEHZ4a2psFO/bw+Dtv8tmkCdzzxDN0PbxnkXbJa+aSl5VB3S7Bz9mXBBEhIiKSiIhIMtPTqVuvHpBeIeeqSDZlZ9HSjmSqD0J5LfzXKII1MgUThScCH6vqnkM1itiV6b8WkB/pXFrYtLCpLjeunAxje7fHf6ooX0IcF708hrU8xyzMpaCkmafBOUtv6yde8ZOtu/Na2rz4bhFZG6BLijLz24+48cLRvD3+DY479lhv36rELPuK1595lNFnD9l/zAszNnL9AH+vrXGvw9kXjPCTj398CYMvHmvUc9WGnVz4yhsAZO6L4+arr6blrWfyv0j/Z6apnebDidcb+2HXanTPVuOu6Xd+6CcbMf0kJnX3z9A85rULuO08f8eDkY2jmLLd3/idBDQf2ZGUVfMZdHrPIt+HtBX+QeHx3Yci2QYjGuO8yJ+T7/+9CHfhnG25mIzkeQ4TKqbvXnHfO5MjjEeVMEM6cZP+FY2IlJcLc40iWLP5vYisAPoCU33ll8shbLtmYTIwxeHkOeNkYBxjTxz6NxmY8qQ0BsbpScxkYAA/A1NA5/gQLrn4Iq679hreemcCGRne9+yB3rksWriQNm3bFGlvMjBgNjCAo4EZcfUbRV5HtBlEVPfTGf3iF6ip+JmTgYESGRjAaGAAo4EBjAYGIDw+gsS9qbSMiw5oYACzgaFkBgZwNDDF4WRgSoqTp6XJwBQnr1gOzXoywRYtuxsYCPRV1Vy8KWZGVaRiFgvAVVdcTkREBP0GDWbS++9z9513Mfrss7n15psrreJlWKOOhNdtTErioko5X3nw6sxFHNu+fDMiWMqIEGxamVpFsAv/kcB1eGNcAJrhHdVYLBVKfHw8702cwJOPPcaNN9/KRWMvZtxrr5OSksKypcX5gpQvLofCXtWRfI8ybd1mbhpsjn+xVBUC7tDiN1ftczkPdqw6EcgBBvleJwGPV4hGFouBU085mdatWjF82HDcbjeHdevGihXl68LshKqH9K1riWrWvlLOV1ZyPfk0i4kiPKT2Tb3UbMQ7nRxoq2UEe0XtVPUZIBdAVTMp32wkFktAWrduReKGRABOOeVUHn7oQdasWVNu/eek7iFn5xo8eVnk7FyFx7d2lrN1CRGNWhMSEVNu56pIcvM9NIuNrGo1LAcjoOIKuNU2gvUuyxGRCHypXUSkHYXqylgslUFC6wQ2JCYCMObcc1m+fDnPPP00498uecoXAE9+Hpt+/5jkxKWkbV6NJycLIhqi2b3IXPMn+Wk7iOpyItlbl9BqSM1ZgszJ99A0Jqqq1bD4UT5pZWoawRqZh4CfgZYi8iEwGBhbUUpZLCaaN2/G5s0Hsgvt2LGdPn3986QFy84Ff7Bz4Z+0Pu4iolt0oE7dJiz5fSbuqPrEDbyCvH2bSFv4Ffmp28hNrxnp/3PwsDM9k5O7JFS1KhYTgYzIoWpkVPVXEZkHDMA7TXZTVaSMrmo8dcxZbN0ZDoWuHIa+ITvXmtun74X/vvYThx1+tLF5fnQDs9whK2CJ42dKGPOwf7/hPHkR5liirDzzOeoYfmyRMbHs2LGdUE8Oqsrvv/3GPbfdQqgnh+xJ5iXC58feb5Sf9n4qm37/iM5nXEfDwwbsl6ckrSI/tykpSau811KvE6RuY+u6LezY7V8IdriD/gAzz483X1tdc4Dk7HVlz8c2k70MdrnpuCeP7XuKZlFuecnlxmNWPviAUd7hhiuMclenI41yySsmqiGirlGcnmf+ruZ7lH05/u9tqIP3VbiTS3KVpIQ0oyIBp8Nq43RZsN5lgreedB9V/QGI9KWPtlgqjciISDIyvJmwVRWPx0NubvF5zpxI3rAczc+jQdf+xbZzxSdAWHSNyCm1iUySyKRRndIVg7NUAjV84V9EmojIqSJyii9PZECCvaLX8cbJFIQ8p+KtXGmxVBoRkRFkZnmfll0uFxdfdCFvTShd8srctGQi6jclUOYKEReu2JZ40raX6jyVyQz2MJT65ZrxwVKeCLhCAm/VFBG5HJgFnIG3lMC/InJwmRY/gjUy/VX1OnxR/r4iYzUncMBSK4iMiCQj/UB0+mWXXMzHn3xGenrJ84qlbllHZANzQbODUc33xjBUY3LwkE4+LbC5yqozAb3LqrfT7h1AL1Udq6oXA32AuwIdFKyRyRURNwe8yxriLX9ssVQaaenpREQecM1t1bIlffv24edfipYVXrZlJ3vSzQXmCti59F8adhtQbJv9ePKQavyECZBCHrGEINX7JnVoIzU+TiYJ7yxWAakUrWBsJNhfzivA10AjEXkC71DJvKJqsVQQmzZupFXLoqlShg0dyt8zZjCym9cp47PZy7jvi9/J83hoEBPJoH+SePLxR5k1azZP/u8ZIiIiCQ8PY8+qefS59pngTuzJw5O2HYmoByJ4kjfhrt8BCYsu70ssFRnkM5d91LOTC9WfgC7M1XrtbzPwn4h8i3fAMQqYJSK3AqjqC6aDAhoZEXEB64E7gWPwepedpqrLy0lxiyUoNm7cSJ+e3YvIhhw5mGuuvwG6nciiTdt54Ks/+O6mc+jYpD6rtu1m0nYXV11zPZu3bOaaq66iffu2fPPtd8yYt5jslN2ENDSXbS6Mq0EXSN5A7rqpaG4mrriW5G2ZR0jLgcBpFXOxQbKLHH5kO52Jpjdm70dLdaHGe5et9W0FfOv7W2yUckAjo6oeEXleVQcClZPHo5qyKc08Q9gqwhxdLbnmbMu5TQ8zn2BjOq5u/nEfkpVsbO7kwlzShd/iarMb2xfTvQKm7pyOcTu4pLoMvqebNm3klFNPJdd14Im9W+8j2Lgpif8t2sa7X/7Iy4/exaBTRgLQAOjZoCPDjhlBdnYOYy++CJfLxdAhQ+nWNJb/vXkTf7w/jtbNDzjJ3NL4FhpKEtc8eEuRc89YULT6d+bOjax893ZcIc43ha31zJ9zmym/GuXnjDjGKBd30XPkq5KRn89XC7exjFS6E0Nv4vfvDwkPoV77+v4dhZsDNDs9Znb/Xvf0Y0Z566cHGeWbPc73mgYOX7HUHHOS03yFNIMLc4TD+52e6+AKX0y25UofhwZTT6Yax8mo6iOlOS7Y6bJfRORM4CvVCs4vb7E4sGnTJlq1alVEFhISwp133U3WltWEhYXSIaHo/tDQUD756EN27tyJq9AP+Koxp5GTk8uIi2/kjw/G0aJJoxLpEtGwFZqXTX52Ju7wiq+cuTMnh9kp+5iVvI+5qckokIuHEFyMonGFn99SHkhg77FqOF0mIi+p6s0i8j2GyCNVPbW444M1MrcCUUCeiGThtcmqqrElVdhiKQ2qyqZNm2jR0j99/U0330zOir95+d1POaxDG7/9LVu0oGUL/2mxGy4aTXaBoXl/HE0bmUeGToRExZObvrdCjUxmfj6vblrPP/v20ic2jgFx8dzQKoH6oWF8Mtdcr8ZSjQk0HVY9p8ve9/19rjQHBxvxXzMyA1pqLTt27CAyMpLoaPMkx28zZjOoz+FE1CmZC+/tl59Hdk4Ox11yMw9efympkQOgYXDHhtdtxr6Vs8jPySSqWQfiO5RP9QtVZUN2FjOT9zJ59066x8TySfdeRLir31OupSTUzDUZVZ3r+3cOkKnqTQXi8zgOGPkbbMR/b8PWTkSqt1+npdawPjGRhIQEP3lubi4TJ07g1ide4pyTzFUwA3HftWO5eewYPvzuFz6+7WxSdmwhJzNw7E2jfqeyc94UMnduZPUnj5HlUAmzJCRlZ3H1qqXcvXYlO3JzuKVlG+5KaGcNTG1AKDcXZhE5XkRWisgaEbnbsF9E5BXf/kUi0rscrmAqUHgBOgL4LdBBwRqJ14HewGLf6+7AQqC+iFytqr+UQFGLpcSsX7+eNm2KToXt3LmTY0ccQ4vmLfh83FP07+ngUBEEl40+mctGn8x1c9yQtpSPbh3NyJuepGnnno7HxHcaSMPDhwCw8OXL8OSWrSL5jOS9PL9pPWObtOCU+g0DZiOw1DSCyMIsgR8mfCOI14Bj8cauzBaR71S1cH3tE4AOvq0/3oKTxedQCkwdVU0reKGqab6ClsUS7NgsEW+kZx9V7QP0BJYAI4Aggw0sltKTuH49bQ8yMhs2JBIdFcUPkyeXycAUJiwiithGzRgy9nZ+fOYWfnruDrauXFjsMerxkJO8k9AYcxLQYBg/7mVeTdrAE206cmqDRtbA1FIC15MJ6nPvB6xR1XWqmgN8gjdmpTCjgPfUy79AvIg0LaP66YVHRCLSByg+6pngRzKdVXV/rVtVXSYivVR13aH0Y1i31/x+ul3mhd/6DplnnTLJ4nLjifQ/xp0b8HMsQq5DFman83ocosRdpZgfFszuyk5u0sV4mBZh/fr1DBo0iLCsA5mKI/IzEc0nLGsv2Utmmvvfudkof+oYvxkGAJ7783n+3ql8fWYbUkaOY9IPUxn36u1kJwyk/Rk3+bV/56I+rF29isvGN+CTm44tsi/P4XM42DX337+m8fYbrzH3t0+Mzgc5axYZ+xkYHW+UT89vSvRTk/zkx0ycY2yfvMvsav/fU68b5ZJjbl8v0rmGTcTKP43y5u3NWRfWu6BeHf+n+jCHL4yT235+dXOGDW7hv4WIFP6wxqvq+EKvm1M00j4J/1GKqU1zoCxzujcDn4tIgT9/U+CcQAcFexdZKSL/JyJH+bbXgVUiEo6vWqbFUpGsM0yXhYaGkJdnjrMoD2KjI7lhzCn8Pv4pts/7FSfv/em//0pGRjrjX32pxOfYtXMH9950NU+89H8l9m6z1CwUwRPEBiSpat9C2/iDujJZ1IO/nMG0KZn+qrOBzsA1wLVAl0JOAY4Ea2TGAmvwWrJbgHU+WS4wvMTaWiwlJCkpiRYHuSG73SHk5eVV+Ll/mTmPqKZtHaew/p72O0cdcyzvv/Mmf04t2fLk8489wClnjWHgUPszqv0oHg28BUESUNiXvwWwpRRtSoRv/eUuvPXEFgMJInJyoOOCMjKqmol38f9uVT1NVZ9T1QxV9RReCLJYKordu3fTsGFR3+IdO3cSGlqxDo5pGZk8/OaHtD3lGsc2SRsSufL6W3jgiWf4vxdLFkowf/a/nHb2+WVV01JD0ABbkMwGOohIGxEJA8YA3x3U5jvgIp+X2QAgWVXL6v44EcjBW/YFvIbMnC6iEMG6MJ8KLMBbghkR6SkiB1+UxVIhZGVlkZOTQ0xM0XCtn36dSr++5eGZ6czzH3zN0N7diW3Vxbg/aeMGtmxOolWbttStb0jlUgw52dls27KZlgn+AaSW2ocCHg28BexHNQ+4HpgCLAc+U9WlInK1iFztazYZ74zTGuAtvNNbZaWdqj6Db4nEN/gIuKoa7HTZQ3g9Gvb5Ol8AJJRCSYulxOzatYv69ev7TVcdM2woH332ZamrYwZi847dvPLxdzxyjXmkkblrM+efdiJ3PfgYoaGh/PnbL0THBB+3HBoWRr36Ddi8cUN5qWyp5uR7tPgtSEcFVZ2sqh1VtZ2qPuGTvaGqb/j+V1W9zre/u6qavT5KRo6IRHCg5Es7IDvQQcHONeSpavKh5ElmqT7s2rWLBg2KLoovX7maK667hTdffp7Q0FAqYvk/OS2dts2bMOTSO3G1G0h0iw5ENmpFSJ1oUjYuJ2naJ9x3370cf8oorr5oDHt37+blt94Nun8RoX2nLqxfu5rWbdtVwBVYqhPBTIlVM1+4g3kI72xWSxH5EBiMd22+WII1MktE5DzALSIdgBuBf0qpaK2jfoT5bUzONt/6moh5GcuDkKb+FRhD4hOM7TXPnHk23+GbWtLcps4PFc79OGVhdkzDHIROGzdupFEjbwLLjLB4cnNzGXPpNdzzwEOccu7FZAAhx11tPNadbc5gfd1Lo43yR4fcQpcnb+HRM14E4BSEfRpLyM6VrN84n42ZmaTk5dE5OporG9Wje9heTh/Sl9EjBvP4A3cQlrMK1q3yntuhjMCmuM77/9+8MZHOHdsRHeYi38HdevZjHxrlg77xd1MG2PLvGj7/ZbWfPKGxeZT118pdRvkpH/n3AfDZxeYpyphti41ygNzdDssByT8axS5PA2LS/Y/RtWZnJmnnn70cwG0ICThAxSc2LUIQ02HBTJdVBb6SL3Xxll4egHea7CZVNX95ChGskbkBuA/v0OhjvHOB5jzgFks58+FHH3HaqAOxZm+8/hrNW7bggosuqpTzx0soxzb2z3T8y66dXProK0x86CaO6dejxP1mZWWxdctmWie0LQ81LdUcJXDcTrWL6/HhK/lyvap+BpifDBwINkFmBl4jc18p9LNYSk1SUhJ//fUX77z9NgDbtm3lpRde4Nff/6jSqPhfdu3kjU0bmPre83Rt458ZOhhm/vUnXbt1JzTUf/RqqZ0EtCHV08YU8KuI3A58CuxP7qeqe4o7qFgj41Q/oFDnxdYRsFjKyoQJEzj77LP3Z1/+7JNPOPmUU2jbrurWMH7dtZM3N23ghc5dS21g9uzexbNPPsrYK8zTfJbaSU2dLvNxKV57cLCnWrFD8UDeZc8Bz+Mtv5yJ1xXuLSANb+6yYhGROiIyS0QWishSEXnEJ68nIr+KyGrfX+PEqVOmURFpJiK/i8i3IhLtk3USkWkiskBElovIwVGylhrIipUrGTToQCXGb77+ijPOOqvK9JmfksxrGzfwfOeuJDhURA3E9q1bGX3ySI46egSjz72gnDW0VFcKpssCbdWYrngTcy7EG9LyKhAwaWCxIxlV/RNARB5T1aGFdn0vItODUCobONqXrTMU+FtEfsK7eDRVVZ/2GY+78UaS7idAptEb8a4TtQUuAN4AXgFeVNVvfccXLQZvqZE0bNCA3bu8a4t79uxh9apVDD5ySJXokpSVySNrVvNAuw6lNjAAj95/N8eecBJ3PVCqaraWmooGni6r3jaGSUAK3nstwLk+2dnFHRTswn9DEWmrqusARKQNQZR28pVqLnClCvVtijdD6LBCik/jICNDoUyjvnMWZBpdBrgBj28rmJhvitcYFZzb2dXFUmNo2LAhu3xGJjIykuzsbNxVUFslJS+Xu1et4LIWLekTF1fqfmYvWsqc/2by7Cvm5JOW2k2gtDHVfLqsk6oW9nD5Q0SKT1EOSDBurSJyPDAebwQpeAMxrwymjoxvRDIXaA+8pqp3icg+VY0v1GavqtY96LizgONV9XLf6wuB/qp6vYi0xlsSNBk4T1VTReQS4CW8rtW/ABNVdZ9BnyuBKwESEhL6TJw4MeD1F5Cabc6TFR1qXoDO8ZRsYTonM50oQ+VHj8M3r6RewWaHZ+c5U6fMtlLM6mRaejqRUf7ZeMUhMNjpGgp+jDu2byc3L4/mzZsDsGjhQjp2OQzXQYYmPcfsLr4v0xyomVDX7L6asmQ5rqaN8GzdUUS+KS8bD0oILmIJ2X81zVs7p/fPjPH3SNu0fi0N6tejfgP/ZJiuPHNc295la43ykBCHT65Vc6Ij/CuErtxp7j+yjvlZM9dj/sa0i3HIeBziXJXU5TH/dvJ3bzfKM8OiiMz3r8/jinfIquAOM/dfzF07xF2yLOPDhw+fq6qlLn/arUcv/W5q8RNAu3ftol+XtlNU9fjSnqeiEJF3gTd8pQMQkf7AxapabDaBYL3LfvbFxxQ4+K9Q1YCRnr5j84GeIhIPfC0i3YI5jmKyiKrqBmBokR2qE0VkCnA83hHPVSLS42A9fRlNxwP07dtXhw0bFqQ68PuanUb5oMZm76DETPOX2O1wZ924ZA4DBgz0k6c53EBDHFL3O6WYz3IIoHFKnx4VatY/1NFcwYx//6NPP//07U66hjgYmQJdzxh1Cpdcejl9+g1g8+bNnH7GGUyZtZjomNgi7f/ZuM/Yzw8LzTkB3zr2cKP813OuI+qB60l/bNx+2c78HO7dt57jaMgaMthJDifQiEjcPP3meeYLABb2Glnk9b/TfuX1555n8fx5hIT4//TC9qw39vPl+bca5TENzan13S8/wZGHd/ST3zN+jbF9r87mSYkdKeYibJ/1Nn/fkxt0NsoBYjLMxmTv+2Zv2MUJ/embvMxPHnnkJcb2efHNzTo5xKoBNIlzLk1QUeQ7/3QAcLDr1YX+ePOhbfS9bgUsF5HFeCeujD+qQN5lvVV1Ht4esvEu+Di2KQ5V3Sci0/Aage0i0lRVt/oK6ewwHFLiLKKqugWYAEwQkSVAN7yjKEsNJCUlhTmzZ/Pehx8D8Pyzz3DmeRf7GZiKZkluBi2JoBkRNKUO80jmS7ZSl1DOSdxKr4TAtaByc3J485nHuPL2B4wGxlL7URRPAB/lQPurmFKNrgKNFyeKSF2fN5hxA95xOlhEGvpGMPhy3owAVuDNEHqxr9nFwLeGw4PJNFr4XMf7nAsQkSZAfcAcQm2pEajHg6oSFRXFhsREvvnqKy697uZK12NlbgbN8E4FCUIf4jmehrQnirPHfcbLU/51nNIEyM/P54nbrqF56zYMHlHtZkEslYhq4K26oqobitucjgv0SBWHdyRQ3OKCeQ7JS1Ngkm9dxoU3W+gPIjIT+ExELgM2AqPB65oMvK2qJ6pqnogUZBp1AxMKV+c0cBzwsogUjPHvUNVtAa7PUo2Ji48nJDSU3bt2sWzZMrof3p34eqUvcVxa1uRlMoyiaygNCach4bxyzzlc+c53zFi1kbcuP5W4g9ZCPB4Pz957M2kpKTwx/n1bVvlQRgNPlzmlhKrJBHJhTihL56q6COhlkO8GjjHItwAnFno9GW/K6mDOdStgnry21FgSEhJITEyk7xF9WbBgAfn5+ZXqXZbsySNN84nHvA7Rqn4c3992Hvd9NpVjn5rE5zeeQ+sG8QCkpabw5G3XkpGexlNvfUh4uPPCuKX2owSeDqvm02WlouRF3C2WSiQhoQ2Jietp2LARDRs0ZO3K5ZV6/j2ePBq6Qh294wBC3W6eOfc4LjyyJxe+8RXZuXl4PMot559Go6bNeHbiZ0REVv4is6X6UZOny0qLXYEsAaEus02evCHT3N7BRbJXE383ZfBmSc40ZFaOz91rbL87xJxhNtLBK8ztKmEWZscdzs8mLhHqGLzVPE69qdn7R3znyM3NxSUuRIT+AweweO5/dOvuH2fbKMrswhofaR6BXPqx2b2/xesfMzh0KzNe9zob7Fq/gtT/e4h75pr9RyKX/bD//zs7d2feAy/x1PSlHNe/B9l5+Zx16yPsyPJA1gFPLSfX8O+XOsylvPO5UfxYxCyjfMqKtUy96uCwM/j4dLNjZ7N6x5rPe5y5sm7O9I+N8gjP3+Z+gKWTzF5k3Z97yih3r9xCdNcRfnLNzzG2z37vUaO8Qf9hjjrR4zjnfRVE4DiZ2mdl7EjGUm3xeDzM/OcfBh05GIABAwbyz/RpJS5ZUBbyc7ODfrzMz/eQmpFJWGgIb37zKyPOutCuwVj2owq5+VrsllcLF2WCLb8sInKBiDzoe91KRPpVrGqWQ53ly5YRXzeepk2bAXDiSSezcukS/vjl50rTYfEPH9B20MjADYHVSduYs2It7Zo3Zt6KdQw+8fQK1s5Sk6gFuctKRbAjmdeBgXhz1QCk4s0rZrFUGDP+/ovBRx65/3WDhg3p1W8A+/YWm1m8XNm3JZGWPQYFbgh0bt2M+OhIHnjrUya/eB917DqMpQiKRwNvtY1gjUx/Vb0OyAJQ1b2AeRLcYiknfvv1F4YeNcxPXplTUBn7drJxgfNaQ2F2JaeSnpXN5OfvpVOrZhWsmaWmcahOlwW78J/ri3VR8AZZ4pwKy2IpM9u2beW///5j4nsf7Jfl5eUxf9a/nHPh2ErRIT8vl+y0FBZ89Q5XpW1CRDj+pFM59czRuA5yAlm/ZQfXPvcWY0YM5vD2rStFP0vNoiZXxiwLwRqZV4CvgUYi8gRwFnB/hWllOeT5/NNPOenkk4kqlGzzk48/omnzFvQ25EarCNwhofQ95zrmfDKOunXr0X/Qkbz79hu8+drLdDu8B9u3beOUrk3ZuS+Ft7+byg2jT+DWMWaPLIsFgihaVjlqVCrBJsj8UETm4g2gFOA0Va3cgIVqgFNW2pU704zyhHrmmiPzt5nbS56ycre/O3TbumZX5fqeVHM/GWY3Tw1xmOHMN2fIzYvyzxQMoAFmq9QwneXyOLgqq/97qqp8/OGHPPfCCxTk1VRVnnvmfzz+kjlF/tDW5vT77eubP4PvlpkTNraIjyB6+04Gt/Jm+x18+50sGtSP8Q/dQma9Vpz73EcsmzGV5F3bad15AJ//Ow2Xuw7XT/yZ2IZNeLtQXwMcMj03jwk3y+uZ21/ay5wbTXLMiS1j82Yx5PsX/eT/XvmAsX14/EyjfNNT5gzl7U7pbZQXR0qS+buau3q+Ua759clP3u2/Y7c5iUf0iecb5ZvqtHLUqY3jnorBO11WvBnJC5QSIAC+VF+f4s2Unwic7VveOLhdIt619XwgryzZpQMRKEFm4RweO4CPC+8LVNvZYikNCxYuJD09jUGDB++XqSqJ69fTp79/luqK5vBBw7jqxfd5+crTGXT6hRx25IH4jZ7DbC4yS3B4p8uKb1MOSzJ3E6AgZCGGq+quMp8xAIFGMnPxvjeCN63zXt//8XhzjlX2w4DlEODLr77mzLOKrnu4XC5CQkLIy8sjNNQcYFmR5Obk0KB5axv3YikDgb3HysG7LJiCkJVKsd5lqtpGVdviTVJ5iqo2UNX6wMnAV5WhoOXQQlX56ptvOO30ojEm4998gxYtW/otuFcWkTGxpO3bzT9ff1CpwaCW2oOqt4ha8RsALURkTqHtyhKcprGqbvWeT7cCjZzUAX4Rkbkl7L/EBLvwf4SqXl3wQlV/EpHHKkgnyyHMosWL8XiUHj177pdNeOdtXn35ZX746ecqKb0MUK9pS64b9ynjrh1Nu179aZzQoUr0sNRcFMgNsPLvKziYVFxlTBH5DWhi2HVfCdQZrKpbRKQR8KuIrFDV4st2lpJgjcwuEbkf+ADve3UBYFiVs1hKj8fj4fMvvuSM00YVmZaa+M47vDH+LVq3bs2WNHM55cogvnFzxOUirI7ZmcBiCUR5TJepqn9SNx8iEkxByIKM96jqDhH5GugHVIiRCXbu4VygIV435m/wDsHOLe4Ai6WknDzqdN6d9B7njRnjty8yqupv7NM/e4em7ToT39gGWlpKjip4PFr8Vvap2IAFIUUkSkRiCv7HW4trSVlP7ESwLsx7gJsqSomaQpcG5htdroNLSMs4c/2QNXsyjPK0rFxmrfSvAXf9QLMb5ppssz77sswL4/F1zPKUbLMLc+sQs9txTnEuMOrBlZftJ853m912N6YeOEdqVi7Pj59EVEJX0nMLuXK63KRkZJOe66FJlPkaopI3GuXRK/4zym8cONooX7wjg727XTQ9yPW5cc5OnvxiAl9MmUaLVo33y1+f4VgQkBs6maf2MhxGQqd3MU+fh6n589mp5rQ1GhKGp75/QGjfhy81tsdl1jPm1heM8vwPzDPlkd37mPsHwkaZZ3K2OHye+2b/y1eRXf3kp7czZzBPF7N7fst9iY46QZdi9pU/igacLgu0PwieJkBBSKAx8LVvtiAE+EhVKywhYFBGRkT+AP9qOqp6dLlrZDlkiY2LIzl5n5+82+GHM2/OHPr261/5SuGdxnvgthu59pY7adHKRvNbSk+giP6yjmSCKQipquuAHmU6UQkIdrrsduAO3/YAsACYU0E6WQ5RYuPi2bvHf6nvqOFHM33a75WuT0Z6Gl9/OJGxJw4jxO3m/Msq1AnHUssJarqs7COZakew02UHV2yaISJ/VoA+lkOYw3r0YuHc2Zx9wdj9stzcXBbOn8/WzZvL9VypqaksXrSIps2a0bRpU1KSk9m4aSMzFq+hdXwEb064mWk//0CvAYO58YHHOW7E0TZGxlJmKiEYs9oR7HRZ4ch/F9AHswudxVJq+g8ewsT/e6WI7Pn/Pcn8uXP46MtvyvVcf/w+lcsvvZTGjRuzZcsWYmJjadWyJbGNm3PxuWfTrlNXxt5wO02atwAqN/OzpXbidWEuPm1MoP01kWBdmAtH/ucB64HLKkopy6FJfL167Ni+jazMTKjjXeD9/ddfeezpZ2jcpHyfaYYMPYrQ0FBmz5tPeHj4fiOyeEcGe1ctoPNRJ5Xr+SwWVW/AZXEcstNlQBdVzSosEBGzu5DFUkpe+d/jnHfJFdSJ8CaK3LdvL+vXraVXn4rJ3aequN1uO0qxVBqBjMyhnOr/H+Dg1KszDbJaTVaeeSg7vInZf2Jxirn9cW3MGYOnbAyhT8t4P/n0DfuM7aPDzB/f3ixzwGJSir9rMThnfq0f4ZwjLDLUfM25KmzL9neJDXdwh16wzZudNyMtle+/+oJxP89iwbZUOtSLYuZf/9GpWw92Zgn4rqlehNndNrSu2evLs/VTo/znrTPo1rMPu7MFCrlwx9cJJcUlfu7e9eqY3+v60c61+1bkm7Nnz1thzknYt5n5e9HEbc6qvXyXww1JQthbx98dOnKQf/wRQGief+ZvgPDcdKNcz73TKE9W5/ciPtPshv3GTLPreR/xsCUly0/+73bzs+3PK8xrdvWK+XzuaO64q0LwKOQ43EMKyMk7xIyMiDQBmgMRItIL73QZQCxQ9dFxlirBycCUhS3rV9O0dVuiYg/caJcvXkCX7j3L/VwAYWFhZGWa45UslorCTpf5MxIYC7QACkdmpQL3VpBOlkOQzevX0qxN+yKylUsWM/z4sq2N/Ll0Hd/MWsaFR/Wid1vvo2tefj5LFi5gY+J6VNVOl1kqhWDWZALtr4kUa2RUdRIwSUTOVNUvK0knyyHIlvWr/YyMquJyiEYPqs/Nmzn3xU+46rh+XPDyp9SPiSQnL5912/fQs/9gPps81RoYS6WhBDFdVsaiZdWRQNNlF6jqB0CCiNx68H5VNeedsFhKyOb1axhy8plFZE1btGTr5k2l7jMsPBy3S3jo7BHcd+Zw/l6+gXoxEbRrXJ+UU6q0xIblEKQg1X9xHIrTZQXJkUwJg2rfu2GpMjavW03zNkXT5zdp1oKNiWtL3Wf9+vXJyc8nJSOL2Mg6dG3ZiEZx3q9ySpm0tVhKh50uOwhVfdP372+qOqPwPhEZbDjEYikxWRnp7N2xje1JG3j+5ks5bsxYok8/nS8+mMBxp5xR6n5FhCFd2jDqf+/RI6EpE36fyxe3n89xPWwtGEvlo6oF9WIcCbS/JhKsC/Or+Lsrm2S1mpmbko3yfi3MrqebU80uoB/OSzLKj40UmhoyNzu5TseGmz++dXvNXlPhISXzCpu71fl5v1/z2BL1tSPd7ML6+8qdbF+5gJhmbZjyy1Ri2nbn8/Gv0iA2GpfLzQXX305G7gH35471zS6s7lzzNU/6Yy7ffvUlU3/7hWFHx/PSrCSG3P8m6almt+CGkaG4BeLCi64F1Us2j6juGpRglANsyzKv98zbuM8of3+mOaPzaX3MvrYxDi7sTYFMgyts3axtxvZZMeZA121p5s+sXdpKo3xfdCejHCA12+zCPrqHuWzCtuVb6dnU/zvWpUGEsf3fDi7m53SvPolJglmTyQ2wvyZS7F1HRAaKyG1AQxG5tdD2MFA1JQotVU5JDUwgdiWupEGbzuxYvZj2g08gNyuDI48ZyZZNG8jPN9+cgkVE2LghkZ8n/0j9Bg2476FHyklri6VkqHqDLQNttY1AI5kwvOsxIUBMIXkKcFZFKWU5tEjZupHtqxaRuiMJd2gY0Q2b0qBxU+o3akxS4joS2ncsVb/5+fncfeetzPpvJn/9O4emzWyxMUvVYiP+D0JV/wT+FJF3VdW5OpPFUgb6nHMtTbr2ISt5D3uT1tKofXcAhp84iv/dfRPPTfyMqJiYAL348/W33zNn1n98++MUYuPMU5oWS2XhUQ1iuqz2GZlgJ+kzRORZEZksIr8XbMGeRETcIjJfRH7wvX5YRDaLyALfdqLDcceLyEoRWSMidxeSN/Pp8K2IRPtknURkmq+/5SIyPlj9LFVL2s4txDVpRZdjz2LHmiU06uA1MudffRPrVy8ncY15DSAQq9eu4egRx1oDY6k25Hs8AbfaRrAL/x8CnwInA1fjrR3tXyfYmZuA5XjT0RTwoqo+53SAiLiB14BjgSRgtoh8p6rLgBuBG4C2wAXAG8Arvj6/9R3fvQT6WaqQfyY+w+7EFcQ0akHG3h10P/F8ABb8NwNPvoddO8wL1oFITNxI974DylNVi6XUBBMnUxtdmIMdydRX1XeAXFX9U1UvBYL69YpIC+Ak4O0S6tYPWKOq61Q1B/gEGOXb5wY8vq3AhacpXmMEgKouLuH5LFWAqrJn0xrOev5L+l9wM52POYO6rbyR/0eOOIE7n3yRd158qlT9/jd7Nl0OO6y8VbZYSoWiZOd5it0OuYj/QhSk9d0qIicBW/DmMwuGl4A7Keo4AHC9iFyEt4zzbaq696D9zYHC4d5JQEGR93HA+0AycJ5P9iLwu4j8A/wCTFTVfUHqGBTdm5jXBXIcytnVrWPOYnztIHPG4DULdhDq8rf7daPNH1NKjtnzqoeDnjM2HPwWe3F6emoQZc5g+/u6PbStZ86P6gLCQ/xdd3fsMbsMb9+yBRRyw+OIbteLDu16kZqVz9a0bLIzM3n+obsYceb5bE3zZpDu7jG7sLqy08jNzeWx517i39lzyc3NIy83l559jjDGHkSFmp0j03Lz8aj3b2FWhJg/s/ZGqZcm8z83yp9rZs7O/GYTc9n1L/41Zyq+ZGhbozxxdwb/+3C+n/yni7sY24divrE1dfjefbLZ7BZ8fENnh9MUBxdmp5r2kaEuejeJ8pcv/snY/pZB5hx3IZl7HHUyx5hXHIfqSEY0CG8GETkZ+AtoiTc+JhZ4WFW/D+K4E1X1WhEZBtyuqieLSGNgF17X8ceApr7RUeFjRwMjVfVy3+sLgX6qekMx52sGHI93xNMJ6KGq2Qe1uRK4EiAhIaHPxIkTA15/AZm55h+KU/4rp8CqUJe5fXZmOmF1/H9YBrsDOH8hnb6naTnmuAenr0CI26xnuLuYAXBOJhGR/teQ6bDguWXnHrKSdxPTpOhNvG6k10CvX76Y1p0Ow+V7E2LDzTey/Jws1iVuIMTtplGDBiBQJ7wOEuYfdwTO7xF4P4fwiKLX4PQeOajjJd1s1HHIx7bLIbH53nSzga4fbY4Z0uwM9uT6n6NDffN7gZg/T8X8+e/LNn+PDo4tKky2U11hB3F+dgaRUYbfQqY5dksjzetu4jHrCiBu51IWJoYPHz5XVUtd3Ci+dWcdcl/x95vs1L38evtJU1T1+NKep7oR1EhGVX/w/ZsMDAcQkZuDOHQwcKpvYb8OECsiH6jqBQUNROQt4AfDsUl4jVoBLfCOoIrTcwswAZggIkuAbnirehZuMx4YD9C3b18dNmxYEJfhZfFWczCm28HI7M4w13VpGmMeIaxZMJuW3fy/w9Fh5puA00gm1eEmsKycRjJOoxgAz4bFdOvb30++ZIc5WPLlcXeSl5VBr/NvKyI/s0MLPB4PD54zmhe/nU5c/QYA9Gkbb+zntmsuo054OC888fB+gwSwK7S+sX1ajtnoeVASF80h4fCin0OeQ7hO+9hiEmzO/MIodsU4jGQ85kwEX6wq2Ugme+1CPt3mf9P9aaR5JOMJNY8O8xxm079budsoH9a+nlEOsH6f2VA6jWRS1synTz//GXmnkUxez4FGeXEjmbB6levSfqiOZMpSGMQvYebBqOo9qtpCVROAMcDvqnqBiDQt1Ox0YInh8NlABxFpIyJhvuO/czqXzxMt1Pd/E6A+YK5kZKkWTPvxGxL//pEOx5qLaW1et5ro+Lr7DYwTubm5fPfTL9xy7ZVFDIzFUp1QvC7MxW2HXMR/AMqSI/0ZEVksIovwjoxugf2uyZMBVDUPuB6Ygtcz7TNVXVpMn8cBS0Rkoe+YO1S1dG5Jlgpn9l+/89rj9zLk1heJbmROm7Ji3n907tUvYF/paWnk5uYxd8Gi8lbTYik/FNSjxW9lHMiIyGgRWSoiHhFxnNpzCg+pCIJd+DdRordDVacB03z/X+jQZgtwYqHXk4HJQfZ/K0GMrizVg1l/TiUrI4NZbz9G/fbdaN77KJocVnSabfm8/+jW78iAfcXXrcsvX33EGRdeTuLGTdx8zRV2RGOpdiiBU/mXQ6r/JcAZwJtODQKEh5Q7gXKXpYpIimFLBWyODkupue7+J/hy9kq6nX4liX//SNLsqUX279ySxMJ/ptH7qBFB9dfr8O5Mn/w1X34/meZde3PWxVfy35x5FaG6xVI6VPHkewJuZTuFLlfVQNHLxYWHlDuB0sqUPJdHLaZjrNkm78w2zxyGuc0L5/XqmL1wQlxQP9J/X4RD9uR5W1ON8pHtzAvLhzcyL9hvTjM7KGxOyTbKAQY3MV/b3xuhjsErbWNypp9sW+Jatnz6JDefNJCHzx2EyzV9/76rJs3ixisuYWzPxkWOMbsPQFZUQxp2bMjUv/5hy5bNnHvOOSxYv4W+w8zvXX01v3eSm8UW8mhL0QVjjTS7u6rH+Se0q8/ZRrlTLERTh8+zX3vzmtQXc83ZvC9rGc61Xdr5yVdnmD+z5Ows83lDdxjlZ7ZrbJSH7FphlAN0j2lklK/3mJOtpiBGr80fYwYZ2x/rMM/kTi0mZryyF/4JPFJR7/4WIjKnkHi8z2GpvCguPKTcKct0meUQxcnAlJTxD9zIjScN4eoTipYmUlU+++pb1i8t3UgkLi6etWvWcPLJp5SHmhZLuaEBBiq+/UnFuTCLyG+AKVjpvoKMJwEwPRVXmFubNTKWKmHjyqWk7tvLFcf5u56KCAmtW7J5y1Ya1De7IDuxetUq7r3nbgYNHkz9BsV7pVkslYp6H6CKbRLEyr+qBjeH7EyJw0PKgl0dtVQJM374gsEnn4XbENiZtGsfO3fupk1rc5S9iaysLG6/7VaOHXEMgwcfyXsffFie6losZUaB/DxP8VvlpJUpUXhIWbEjGUuVsDNpA0NPOxcoGiC6bW8K173xOReMGU1sbPBLgu9OnMjyZcuYO2++HcFYqieqBWsuzk3K6F0mIqfjzcrSEPhRRBao6khfNpS3VfVEVc0TkYLwEDcwIUB4SJmwRsZSJUTExJKRVjRFyOLELZzy2FuMPaYfDzx0X9B95eTk8MpLL/Lehx9aA2Op1jhlOAh2fyBU9Wvga4O81OEhZcUaGUuVEBUbR3pKMoWTFK5I2sGRXdry8HknEBJuzstl4rNPPqZDh4707XtEBWhqsZQPquAJENEfaH9NxBqZEiA56UZ54zyzC6g7xZxwwJNtngZyC9QN8f+Sbcowf/EGtzS7f7rzza7HYatnGuVNOh5llDeIMH890hTiN8817nNpPpE5+/zkceFF+6obH48nM406PQ/Uq2ucGkbK7NXU6TmUjHBzwkNPoUSLu3btZNwrL/P+u+/y5ZdfEGJIPCp55vdCcvxdqgE0PArEhYYVdfeWLLN78c4ws2sugFMe0cYO2blPbm1OYNmunjkjQue6CUb5vzP+5sj6/vpqiDmn3aZQs8v7ntBWRnkc5vc0v565PQAOiSrbb5ttlG9UMeaXO6Gt+Tuf6lBRcne0vyt3AcGv+JUfgV2YK0mRSsQu/FtKjJOBKQnRsfHs3bW9iKxefBxJW7fjCaI64JrVqxncry9pqWlM/+dfBg4yx09YLNUHRTXAVnGexFWGNTKWKuGI4SP599cfWbX+QIbhHp070Lh+PY4acxXHHD2cJYud685dfcVl3HXv/Tz34ks0bxFsaSOLpepQhfw8DbjVNqyRsVQJjVu0YtTYa7n3udf2y0JDQ/j6zWe55bLzyMvNZevWrY7H5+Rk0/1wc5GvsrB9x479I6klS5fx9HMvkpxsrmFisZSIYBJk2lT/Fkv5sXfnNjq1KTozHh8bwxkjhxMbG0devnPBqaOGDefPaX+Umy4pqanc/ejTHN7vSBYvXcY5F13KyFFnMW/hIvoMHsYff/9TbueyHLpYI2OxVCLL589maL/exn2nn3E6zz/3HLm55rxqw4Yfzffffk1WltnpoiQsXr6CBh16sHvPHia8MY6WLZpz3DHD+fX7r3j2iUdp26Y13//8W5nPYzm0UbwuyoG22ob1LrNUGUNOPI23PvmaY4/s55eaf+wll/LtN9/SoF5dIiMjiY+PJy4unrj4eEJCQ2jUsDGbkzYzqF8fZs6eR4RDdcdg2LFzFwBut5trb76Ne++9j99+ncpzL48jNTWV4445msfuub1M12qxoBrYhblyIv4rFWtkSsKy6UaxK86cX0vjzO6t4jgNpODxr/Mb6jJ/TPX3rTF341BLRZs4u3OaMLkEA6S17Esdj4Nr8Kb/cGX7u3r3buqfz6/DtVfy2C3zOOLMy3n8vrs4dvjQ/Zl3IzJ38/MnE/B4PKSmpbEvOYUly1bw2gvP8ffSNYS6XYS4XWxI3MPitx7hqOsfNuuTnWaUe6IPBG0OP/E03nj9NRYvXsyi375m/sbduDOO4JGbr+SwTu0RESQ3GzL8r3lbjtn9FyDWoea9KUs1QJSDrl1izW67mx1c29XlwlPH301eQ8wu0o1CzN+viJ2rjPK8+glGuSvVXJYZQJLN7vw57Qcb5SHbptMoxz8LdF5EU0NriMvfZ5TH1oly1KkqCDILc63CGhlLiXEyMCUlJiaW9/7vZdr2HMAVN99Bx7ZtGP/ys7RpfSDewuVyUSc8nAeeeIYff/kNlyefgV3acmS39rzxw5+ceWRvhnTvUGZdxl7kraPn3ruRsK0pXHmBOU2/xVJatJwSZNY0rJGxVCnJKals2+Gt+ZGamkrvYSN58clHuXjMWftHNQsWL2XeosWEhYXx3q0XMLxHJwB+m7+c6YtXMX3xKoaZ40ktlmqEkh9guizQ/pqIXfi3VCn169Vl+6pFDOjbmw7t2tKlQweuv/0e+h19Iu9/9iWpaWmsWrueuNhYeh/efb+BAQh1u7nihCHcMf5L8vP9pxktlmqFgnryA2zWyFgs5U7d+Dgmf/YBdePiaNG8Ka8/9xSp6elcfcudNOnYgxvuvJely1fyiGHx/chu7YmPjuCyq64hafPmKtDeYgkORQMbGa19D0vWyFiqBdHRUXzz4QSaNm7EfY//j3tuuZ6Vs//msfvvZPCAfnz9wTv07eUffCkifHrflbRo0Zx+g4Zw7wMPsnWbeZHZYqlSghrJWCNjsVQYderU4eWnH+ObDyfw5rsfcNbFV3BY50788Ml7DB9i9kICiI+O5PGHH2LOvzNITkmhV78BdDisO+deeDFvv2eLl1mqCerBk5sTYDPHhdVk7MJ/CdDDjzPK8x1cT3Gb314nV1JW7zC63DZ1cEnOj2lolIfsWm+U72jU1ij3GLLdAtSv4+AK7QrHKcWSJySMnPiWfvKmDon/XNt2+cmOaN+MGd+8z1eTf+XOBx7hqfg4Lj77NLp0aEfnLkcSH+d16Y1v8R0nP/gaLpcLkVuIjY7mmovHsG3BdNZu2MQ1dz3MN9//yBUXnON3jjWpZn0axrYhz72dvbFtisjDHNyOD09zHjV5IszuzStTzO93mDveKE9wm12hm9cxu8InSgg5dfzPHerJMbZ3kmc27GiUh6dtN8pNbtMHDjK7EruzHFL2uEKKuJnvF+eX7CbslIXbS/BF8cqLQCOV2jiSsUbGUmIqI4efy+XirJNHcvoJI/j0u5/45c8ZjH//M1at28DJI4/h+svG8t5rLxIS4mbZytW89PqbLFu1ht///o8Xx08iIzOLdq1b8vt3n1e8shZLEBSsyRTbxhoZi6VycbvdnHf6yZx3+skA7MvM481JH3LZTXewfuNGoiIjCQ8L47Jzz+C5h+6kft149iWnEhsTRUhICBpWvYLxLIcwqnjyzKPG/U1KOFKrCVgjY6lRxMXGcucN13DnDdeQl5fH7r17qRcfTxgHfpz16poLnlksVYqCJ8BIJdD+mog1MpYaS0hICI0b+talauGCqaV2YafLLBaLxVJxqOLJLX66zHqXWSwWi6WUBDGSqYXBmNbIlAB1hxrlZudWcGXsNcrT4xPMBwjmDMpOqSZCwozi3CZdjPK6Dp92er75CiTfweUV2JNn7kzycwlN88+emxttzkid1sisq0MCaKK2LTXKcxyuWV1m99+GDm7bsa5c3CixrqJPlCrm682PaYQrO9W4b0+++fvSJWSnUZ4d3dgoD9m30ShPi/V3FQcQPITmZfrJN2aZ9akfYX6P3A5ehBoebd6R61zbJzmsnlGekWv+HPIVkvP8fwtxIeb2e1xmd+R9Wc437c6VvXSnFe/CLCKjgYeBLkA/VZ3j0C4RSAXygTxV7VumExeDNTKWEuNkYA5FnAyMxXIwlbQmswQ4A3gziLbDVdU/UK2csXcLi8ViqQxU8eQVv+biyXMuOR7cKXQ5sD+DeXXAppWxWCyWSiFwgkxf0cIWIjKn0HZlhSgDv4jI3Arqfz92JGOxWCyVgAYRJ+Nb+E9S1eOd2ojIb4B/qVm4T1W/DVKdwaq6RUQaAb+KyApVNZf+LSMVbmREJB54G+iG13peCqwEPgUSgETgbFX1WyUXkeOBlwE38LaqPu2TNwM+wLtwdb6qpolIJ7zzkPFAOPCXqlaohbZYLJagCcKFWYNwYVbVEWVXRbf4/u4Qka+BfkCFGJnKmC57GfhZVTsDPYDlwN3AVFXtAEz1vS6CiLiB14ATgK7AuSLS1bf7RuAGvMbrAp/sFeBFVe2pql2AVyvukiwWi6WkBFFPphKCMUUkSkRiCv4HjsPrMFAhVKiREZFYYCjwDoCq5qjqPmAUMMnXbBJwmuHwfsAaVV2nqjnAJ77jwDuy8fi2ghWupkBSwcGqurg8r8VisVjKhFa8kRGR00UkCRgI/CgiU3zyZiIy2desMfC3iCwEZgE/qurPZTpxMVT0dFlbYCcwUUR6AHOBm4DGqroVQFW3+uYFD6Y5sKnQ6ySgv+//ccD7QDJwnk/2IvC7iPwD/AJM9Bm0IvgWua4ESEhIYNq0aUFfjGNpVIcvhjgEVuW7zenhMzKymDHfEAfilPXYyYOkWM8S8z6noq8uh5PnqbmfrMws/l64wk+u7rXG9upwbY6xR4b4DwBNdEgZX8x7ke9w8sz0DP6ZZQovcOhLze9ensMzXIiaPYjUZS7R4HKIV8p3myuBZqRn8M+c+X7yHI9Z/43FPmqaj3E5BQ06vKf5DvFKHofPPzsjnUVz/vOTO1RcIN+hn+Iyhm9bXsl+T65QPJl7kHDnAB3Pvg0AxtiWYFDVr4GvDfItwIm+/9fhnVWqFCrayIQAvYEbVPU/EXkZw9SYA6avkwKo6ga8I6QDO1Qn+qz28XhHPFeJSA9VzT6o3XhgPEDfvn112LBhJbicimXatGlUJ31Kg72Gqqem6w+14xoOxtXkcPK3LSSk9VDjflUP+buWgfeBudZQ0aY8Ca+nRMEjyRd4jc52EWkK4PvrHyLuPbZwSHMLYEtxJ1PVLao6QVVHAXl4nQ0sFoulyslf+4uLnDQ0O9m4X/esxRXbAlXdXcmqVSgVamRUdRuwyef5BXAMsAz4DrjYJ7sYMLndzQY6iEgbEQkDxviOMyIix4tIqO//JkB9wDyfYLFYLJWMqqqrSQ/yty007POOYjzbF/mXA63hVEaczA3Ahz5DsQ64BK9x+0xELgM2AqNhv2vy26p6oqrmicj1wBS8C/0TVNWcuMrLccDLIlKQQOkOn5GzWCyWakH+2l9cEtXYo9nJRdZmCkYx+Rm7a9UoBirByKjqAsCUfO0YQ9v9i1O+15OByQe3czjPrcCtpdPSYrFYKh5V1ZD2I4uszexfi8ncU+tGMWDTylgsFkulcvDaTG1diynAGhmLxWKpRAqvzdTmtZgCrJGxWIohLy+P5cuXs3GjuaaLxVIaCkYznm3za/UoBqyRsViMpKamcuONNxIbG8spp5xC7969ueaaa1Cn6FGLpQQUjGY8O2v3KAZADuUfjYiUOrK2gmgAVHgRoQrGXkPVU9P1h+p5DbuKy45cUsRb9CVWVc2BM7WEQ9rIVDdEZE5FlkGtDOw1VD01XX+oHddg8WKnyywWi8VSYVgjY7FYLJYKwxqZ6sX4qlagHLDXUPXUdP2hdlyDBbsmY7FYLJYKxI5kLBaLxVJhWCNjsVgslgrDGpkyICITRGSHiCwpJKsnIr+KyGrf37qF9t0jImtEZKWIjHTos7jjnxWROSJylO/11yJyWqH9K0Xk/kKvvxSRM0pwPbeIyFIRWSIiH4tIneL0OejY433nXyMidxeSNxOR30XkWxGJFpF4EdntixFARAaKiIpIC9/rOBHZIyKl+m76+v9CRFaIyHJf/zXtGtwiMl9EfvC9rjH6i0hLEfnD994vFZGbato1WMoX+wGUjXfxVuIszN3AVFXtAEz1vUZEuuKtiXOY75jXRcRUk9bp+M6+/UOB63z//wMM8u2vD6Thre1dwEBfm4CISHPgRqCvqnbDW15hjJM+Bx3rBl4DTgC6Auf6rhdfnzcAbwMX+EpibwO6+PYPAuYXXAcwAPhP1aGmcWBeBn5W1c54S8wur4HXcJNP7wJqkv55wG2q2sXXz3U+PWrSNVjKEWtkyoCqTgf2HCQeBUzy/T8JOK2Q/BNVzVbV9cAaoJ+hW6fj3YAHbwnqgtLUMzjwoxoE/AA0FC9tgMwS1tQJASJEJASIxFuJ1EmfwvQD1qjqOlXNAT7xHVdYb08xer940OugDOPBiEgsXiP8DoCq5vhuRjXpGloAJ+G9mRZQY/RX1a2qOs/3fypeY9m8Jl2DpXyxRqb8aayqW8H7gwMa+eTNgU2F2iX5ZEEd7yvYFgn8Dfyfr+1coJt4C8INAmYCK/E+3Q3C+yMMClXdDDyHt4jcViBZVX8p5noKU9y1jQPeBK4GPvDJ9o/AgLbA5xyoOVQivQ+iLbATmOibbnpbRKJq2DW8BNyJ92ZaQE3Sfz8ikgD0Av6rqddgKTvWyFQeYpCVyH9cVW9Q1T6q+rvvdTawFOiNb3oAr6EZRAmf5Hxz5KOANkAzIEpELgj2cJO6Ph03qOpQVT3F92QLvidQ32grUVWzvCpINNAHmBWs3gcRgve9+D9V7QWkY5iWqa7XICInAztUdW5Jj60O+hdRxtvPl8DNqppSE6/BUj5YI1P+bBeRpgC+vzt88iSgZaF2LfBORwV7vBP/4J0iilHVvcC/HDAyJXmSGwGsV9WdqpoLfOXrIxh9gr02AFR1NVAXOAWvUQTvqOwSnw5pJdD7YD2SVPU/3+sv8BqdmnINg4FTRSQR71TR0SLyQQ3SH5+OoXgNzIeq+pVPXKOuwVJ+WCNT/nwHXOz7/2Lg20LyMSIS7nvy6oD5ScvpeCdmAFcBC32vF+Ed1bTCO8oJlo3AABGJ9HnsHIN3Pj0YfWYDHUSkjW/qbozvuOKYiXeBe2ah1zdThnl03/rTJhHp5BMdAyyrKdegqveoagtVTfCd/3dVvaCm6A/7Mwu/AyxX1RcK7aox12ApZ1TVbqXcgI/xrl/k4n0Kuwyoj9d7ZrXvb71C7e8D1uJdNzmhkPxtvF5dFHe8gw6N8E4pXF5INg2YUorreQRYASwB3gfCnfTBO6U2udCxJwKrfNd3XxDnugPIASJ8rxN813FuGT+TnsAcvMb2G7xPujXqGnx9DQN+KO47UR31B4709bEIWODbTqxJ12C38t1sWhmLxWKxVBh2usxisVgsFYY1MhaLxWKpMKyRsVgsFkuFYY2MxWKxWCoMa2QsFovFUmFYI2OxWCyWCsMaGYsREanQaGkRmexL1x4vIteW4vhh4kuFX4L2ySIy2WH/uyJyVkn1qIn43otBhV7fIiIbRWRcVeplqZ1YI2OpElT1RPVmSI4HSmxkSslfqnpiRZ7Al8G6ujOMA4klUdUXgQerTBtLrcYaGUvQiEhPEflXRBaJt2BaXZ98moj8T0RmicgqERnik0eKyGe+9p+KyH8i0te3L1FEGgBPA+1EZIF4i7IVGaGIyDgRGev7/3jxFiP7GzijUJso8RaQm+3LvjyKAPjKIYwTkWUi8iOFsgKLSB8R+VNE5orIlEI5t47wXctMn65LfPKxIvK5iHwP/OKkj3iLkT3rky8Skat88qYiMt33HiwpeP8c9D7Od/55vnNG++QP+vpdIiLjfeldEJEbfde4SEQ+EW9m5KuBW3znczyXxVIeWCNjKQnvAXep6uHAYuChQvtCVLUf3rxRBfJrgb2+9o/hzYx7MHcDa1W1p6re4XRiEakDvIU3GeIQoEmh3ffhzfN1BDAceFa8Kf6L43SgE9AduIIDxd9CgVeBs1S1DzABeMJ3zETgalUdCOQf1N9A4GJVPboYfS7DW0LhCOAI4Arx5rE7D28aoJ54C60tcHgPGgD3AyNUtTfe9Dm3+naPU9Uj1FtwLgI42Se/G+jl+wyuVtVE4A3gRd97/leA98liKRM1YWhvqQaISBwQr6p/+kST8NbvKKAg2+5cvPmjwJvH6mUAVV0iIovKoEJnvJl1V/v0+QC40rfvOLzZi2/3va6DN0Hocr9eDjAU+FhV84EtIvK7T94J6Ab86hsMuIGtIhKPN9N1QeLFjzhwIwf4VVULCtg56XMccHihtZ84vIlSZwMTfAbuG1Vd4KDzALwVI2f4dAvjQGLI4SJyJ96aQ/XwJkf9Hm8OsQ9F5Bu8udwslkrFGhlLeZHt+5vPge+VqT5IIPIoOsKuU+h/p0R7ApypqitLeC5TfwIs9Y1WDggdatIXIj2QPr4prBtUdYrfSUWG4q2I+b6IPKuq7zno9quqnnvQsXWA1/EmWd0kIg9z4H07Ca9BPRV4QEQOC3AdFku5YqfLLEGhqsnA3kJz+BcCfxZzCHireJ4NIN5a7d0NbVKBmEKvNwBdxVsSIQ5vun7wZoduIyLtfK8L32inADcUWofoFcQlTcdbesHtW3MZ7pOvxFvCeqCvr1AROUy9tXpSRWSAr92YYvp20mcKcI1vxIKIdPSt37TGW6zsLbxp8ns79PsvMFhE2vuOjxSRjhwwKLt8azRn+fa7gJaq+gfeapvxQDT+77nFUmHYkYzFiUgRSSr0+gW8dUDeEJFIYB3e4lDF8TowyTdNNh/v1E1y4QaqultEZvgW0X9S1TtE5DNf29W+41DVLBG5EvhRRHbhNWDdfN08hrds8SLfjT2RolNZJr4Gjsa7trQKn8FU1RzfdNYrPiMX4ut7Kd41lbdEJB1vOYVk/26L1edtvFOJ83zynXhr3Q8D7hCRXCANuMjUqaruFK8TxMciEu4T36+qq0TkLd+1JOKdfgPvVN8HvusQvOsw+3wOCl/4HBJusOsylorEpvq3VBgi4gZCfQaiHd46Ih1VNacKdBkG3K6qgYxPcX1Eq6/aoojcDTRV1ZvKR8OqxWe8+qrq9VWti6V2YUcylookEvjDNz0kwDVVYWB85ADdRGRyGWJlThKRe/D+bjYAY8tLuapERG7B69b8ZVXrYql92JGMxVINEZH/8FYmLcyFqrq4KvSxWEqLNTIWi8ViqTCsd5nFYrFYKgxrZCwWi8VSYVgjY7FYLJYKwxoZi8VisVQY/w83qjFp9pn5QgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import cartopy.crs as ccrs\n", "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n", "from matplotlib import colorbar, colors\n", "import cartopy.feature as cf\n", "\n", "# Draw coastlines of the Earth\n", "ax = plt.axes(projection=ccrs.PlateCarree())\n", "ax.add_feature(cf.BORDERS)\n", "#ax.coastlines() \n", "ax.add_feature(cf.COASTLINE)\n", "\n", "#adding ejes\n", "xticks=([-120,-100,-80,-60,-40,-20,0])\n", "yticks=([-75,-60,-45,-30,-15,0,15])\n", "ax.set_xticks(xticks, crs=ccrs.PlateCarree())\n", "ax.set_yticks(yticks, crs=ccrs.PlateCarree())\n", "lon_formatter = LongitudeFormatter(zero_direction_label=True,number_format='.1f')\n", "lat_formatter = LatitudeFormatter(number_format='.1f')\n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter)\n", "\n", "#adding grillas\n", "\n", "ax.gridlines(draw_labels=False, xlocs=xticks, ylocs=yticks)\n", "(data_jan_nina_mean-data_jan_normal_mean).plot(robust=True)\n", "\n", "plt.title(\"nina-normal, 81-10\")\n", "ax.set_aspect('auto', adjustable=None)\n" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "# con t-test\n", "from scipy.stats import ttest_ind, ttest_ind_from_stats\n", "\n", "data=data_jan_nina.copy()\n", "pvalues = np.zeros((data.shape[1],data.shape[2]),dtype=float)\n", "\n", "for ni in range(0,data.shape[2]): # loop over longitudes\n", " for nj in range(0, data.shape[1]): # loop over latitudes\n", " \n", " info_a=data_jan_nina.isel(lat=nj, lon=ni).values\n", " info_b=data_jan_normal.isel(lat=nj, lon=ni).values\n", " \n", " array_sum = np.sum(info_a)\n", " array_has_nan = np.isnan(array_sum)\n", " \n", " if array_has_nan == True:\n", " \n", " pvalues[nj,ni] = np.nan\n", " \n", " else:\n", " \n", " result = ttest_ind(info_a,info_b).pvalue\n", "\n", " pvalues[nj,ni] = result" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "data_set = xr.Dataset( coords={'lon': ([ 'lon'], data.lon.values),\n", " 'lat': (['lat',], data.lat.values)})\n", " \n", "data_set[\"pvalues\"] = (['lat', 'lon'], pvalues)\n", "\n", "data_set.to_netcdf(\"pvalues_nina_nnl_81-10.nc\",mode='w')" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEWCAYAAACqitpwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABjzElEQVR4nO3dd1yV1R/A8c8XBNy4FcGcOFEcuPfemivNzBzlypVlWv3ShuUsrTRNTcuRu8zMmYpm7r1FBQco5kJBFBHO7497IZBxL3AvXOC8ez0vuc84z/ek8OV5zhKlFJqmaZpmSXZpHYCmaZqW8ejkommaplmcTi6apmmaxenkommaplmcTi6apmmaxenkommaplmcTi6aRYlIQxG5mNZxpDYR+URElqV1HJpmK3Ry0SxKKfW3UqpcWsdha0TkFRE5LyLBInJORF6OcaypiOwSkYcictWMshI9X0RKGI+HisgFEWlh0cpomhl0ctEyJRHJkor3cgWWAWOA3MBY4BcRKWQ85TGwyLjfHKbOXwEcB/IDHwFrRaRg8qLXtOTRyUVLMhG5KiLvicgp42/Pq0Qkq/FYExHxN/PcvCKyUUTuiMgD49duidy3n4jsFZEZxvP9RKRtjONFRWSDiNwXkcsi8laMY5+IyFoRWSYij4B+IuItIpNEZJ+IhIjIHyKSX0SWi8gjETksIiVilPGNiNwwHjsqIg3N/F/mBgQppTYrgz8xJIjSAEqpQ0qppYCvOYUldr6IlAWqAxOVUk+UUuuA00A3M2PVNIvQyUVLrleANkBJoArQLxnn2gGLgeLAS8ATYLaJ+9YGLgIFgGnAjyIixmMrAH+gKNAd+FJEmse4tjOwFsgDLDfu6wW8Drhi+GG/3xhTPuA8MDHG9YeBqsZjvwBrohKlCUeA8yLSSUTsja/EwoBTZlybVJUAX6VUcIx9J437NS3V6OSiJde3SqmbSqn7wB8Yfugm6Vyl1D2l1DqlVKjxh+EXQGMT972mlFqglIoAfgZcgMIiUgxoAIxTSj1VSp0AFmJIHFH2K6XWK6UilVJPjPsWK6WuKKUeApuBK0qpv5RSz4E1QLWoi5VSy4wxP1dKfQU4ASbbl4yxLsGQkMKMfw5WSj02dW0y5AQevrDvIZDLCvfStATp5KIlV2CMr0Mx/FBL0rkikl1EfhCRa8ZXVXuAPMbf7hsaX1WFiMjZ+MpSSoUav8yJ4Wnl/gu/sV/D8EQS5UY8sd2O8fWTeD5H10tE3jU2yj8UkSDAGcMTVKKMDerTgCaAI4YEulBEqppx7Ycx/j/MM3U+EIKhXSem3EBwPOdqmtXo5KKlpXcx/OZfWymVG2hk3C/GXmc5jZs5r3RuAvlEJOZv6C8BATE+J3sKcGP7yjgMr/jyKqXyYHgikMSuM6oK7FFKHTE+NR0GDgIme3Eppb6M8f9hiBn3OguUeuH/g6dxv6alGp1ctLSUC8PTQZCI5CN2+0aSKKVuAPuAySKSVUSqAAP5r20lpXIBz4E7QBYRmUDcJ4SEHAYaRj2piEg1oCHGNhcRsTO23TgYPkpWEXFMqLDEzldK+QAngInG/V0wtHOtS2qFNS0ldHLR0tIsIBtwFzgAbElhea8CJTA8xfyGocfU9hSWGWUrhjYZHwyv254S/2u2OJRSu4FPMHQJDsbwg/5LpdQ24ymNMCTZTfzXsWFbPEVh5vm9AC/gATAF6K6UumNOrJpmKaIXC9M0TdMsTT+5aJqmaRank4umaZpmcTq5aJqmaRank4umaZpmcak2eZ+tadOmjbp7925ahxHt2bNnODom2Ps0xYKCgggICODZs2fkzZuXAgUKEBoayu3btylVqhQ+Pj6UKFGCvHnzxnv9iRMn8PDwIEuWhP/JWLsOqUHXIe0lFv+9e/e4desW2bJl4/Hjx4SHh8c6XqBAAYoXLx79+erVqwAUL16c/2YJSrqjR49uVUq1SXYBQOumOdS9+xGm73UqLMX3sglKqUy51ahRQ9mSXbt2pcp9goKC1CeffKJq166tKlSooACVM2dOVaZMGXX79u0Er8uZM6d68OBBomWnVh2sSdch7SUW/4cffqjy5MmjihUrpho3bqxWr16tzp8/r7766iu1cuVKFREREev8oKAg5eXlpZYvX56imIAjKqU/c6o4qYhb7iY3S9zLFrZM++SSWTk7OzNx4kQmTjSMVyxdujR37txh//79FCiQ8EwmxYoVw9/fnzx58qRKnEopgoKCEnyS0jKnypUrU69ePbp06cLt27dZvXo169evx9HRER8fH3bt2kXu3Llp0qQJrVq1IjAwkMaNG3PhwoW0Dh0FRBKZ1mGkGt3mksmdPn2amjVrMmjQIJ4+fRrvOYGBgfj6+pIjR45Ui+uDDz6gUKFCtG/fPvrVx8GDB3n+/HmqxaDZnmrVqrFnzx62b9/OzZs36datG23btqVBgwZ4eHjw008/YW9vz8SJE8mZMydVqlRh5syZHDt2jEWLFhEZGUloaCjTpk2jZs2a7N271+Q9nzx5YvIccygU4SrC5JZR6OSSyWXPnp1Nmzbx9OlTpkyZEu85+/fvp0WLFpQsWdLq8Tx79oz//e9//Prrrxw5coRdu3YREBDAL7/8Qp06dVixYoXVY9BsV9myZalZsyZ58+Zlzpw59OrViz59+jBw4EDatjUs7fPll19y+PBhLl++TEhICKtXr+bMmTPMnDmTTp064eXlxT///MPrr79O3759iYhI+Ae6UooBAwZYLP5IM/7LKPRrMQ0nJyfmzZtH3bp1KVOmDH369Il1PCQkJFWeGPz8/OjZsycFCxakdOnS1KpVi9KlS1OiRAmmTp1K48aNmTp1KnZ2dlSsWJFq1aqZLlTLUESERYsW4eXlhbu7O3379uXRo0fMmTOHRYsWUadOneiGezc3w7pz3bp1o1u3bgQHB7Ny5Upy5MhB7969UUqxYcMGxo8fz/Tp0+O935EjRzhw4IBFYlcoIlTmmRFFP7loALz00kts376d999/n86dO7Nq1SpOnTrFtWvX2LBhA506dbL4Pffs2cN3332Hk5MTnp6e1K5dm9dee41PP/2Uv//+m5deeomxY8fyzjvvsG7dOpo3b06HDh34888/ad26Nb///rvFY9JsX4kSJVi9ejUnT56kTp06tG7dmvDwcP766y927dqV4HW5cuXirbfeonfv3oAhUf3vf/9j4cKFCf7ydOHCBcqUKWOx2CNRJreMQj+5aNEqVqxIgwYN2Lp1K/fu3ePSpUuEh4dTrVo1fvzxR4YNG2aR+yil+Oyzz1i8eDF16tRhwYIFVK5cmZw5cxIWFkarVq2YOnUqw4cP5+2332bMmDHs27cv1jf5kSNHaN++PcWKFaN69erR5T5+/JicOWMvLfPgwQPu37/Po0ePCA4O5vnz5wQFBZE1a1bWrVvHzZs3Wbp0aaIdGjTb0qxZM5o1a8Y333zDxx9/TK9evfDy8kpyOdu2bSMoKIh79+5RuHDhOMe//fZbPvvsM/76668Ux6yAiAyUPEzRyUWLpVatWvj5+bF3716UUhw4cIAFCxZw+vRpTp8+TeXKlVN8j40bN7JixQoOHjwY6xs6IiKCatWqMWnSJPr378/w4cNp1KgRkyZNilOGl5cXXbt25eWXXyZ//vyEhobi7+/Ps2fPGD16dPTrM19fX8qXL4+bmxu5c+cmIiKCM2fOAFCwYEFq167Nrl27uHPnjk4u6dCoUaPImzcvkyZNYvPmzUm+vl+/fkybNo1jx47Rpk0bRIStW7eydu1a3nrrLUQEZcFXWRnpycQUnVy0WLJkyULNmjXx8/PDz8+PZs2aUbduXWbPnk3fvn3Zu3dvinuN7d+/n969e8f5TfHq1asEBQXRv39/Fi5cCMDNmzeJiIjA3t4+TjlTp05lyJAhREREkC1bNtzc3AgPD6dDhw7UqlWL2rVr8+effzJ69GimTZsGQEBAAO7u7vzwww/07dsXNzc3nJycUrUnnGZZbdu2ZeTIkfH+8nP27Fn279+PiNCxY0cKFSoU63jZsmVp27Yt3bt3p2rVqri6urJx40YaNmxI7dq1KVq0KG+88YZF4lRAuG5z0TKrli1bsnLlSkqVKkXz5s05ffo0AG+//TbVqlWja9euhIWFJXj9jRs34oyaftHJkyfx9PSMs//ixYuUL18eEeGDDz7gwIED5MqVi6VLl8ZbTu7cufH09KR69epUqFCBXLlykS9fPnbt2sXUqVMpXbo0CxcujE4sAK6urkybNo1hw4ZhZ2fHX3/9xUcffRTd+KulPwULFmTu3Lk0bdo0uh0uMjKSN954g0aNGvHPP//w66+/8sorrxAZGX9vrGnTpjFu3Di6devG33//zcqVK1mzZg03btxg1qxZFolToYgwY8sodHLRYqlUqRJ+fn4UKFCAChUq0LJlS2bPno1Sik6dOrFv3z6GDRsW55v04cOH+Pn5UblyZRwdHenduzdLliyJk2i2bNnC8ePHcXV15UXr16+ncePGANSsWZMLFy5gZ2eHi4tLkurg5ORE8+bNGTNmDC1axF1JePjw4QQHB3P37l2aNm3Kjz/+yI0bZq37pdmoV199lS1btvDmm29y4cIFfv/9d86cOcPZs2dZvHgxGzZs4MGDB2zdujXOtdWqVePkyZN06tSJnj17UqNGDfLmzUv37t2xs7OL7gCQYgoizNgyCp1ctDicnZ25c+cO586dY9u2bSxbtowxY8bg4+NDu3bt2LdvHz169OCff/7h8ePHjB49Ono+p59++okvvviCFi1asGDBArp27cqzZ88AWLFiBW+++Saff/45NWrUiHPftWvXsn37dgIDAxk2bBjjx4/n9OnTNGzY0Cr1zJs3L/Pnz6d+/fr8+uuvVrmHlnq8vLyYMGECvXr1YsiQIUyaNIkiRYoAYG9vT+/evdmyJe5ip4MHD2bt2rUJjndJyZxkMRlG6JveMgqdXLREValShdmzZ7N27VrKli3L6tWr+fjjj3n06BGNGjWiYMGC3Lt3Dx8fH3LkyMH48eNZu3Ytv/zyC1u2bCFLliy0bt2aiRMnMnr0aLZs2cLAgQPj/YY9fvw4uXPn5rfffqN9+/bMnz+fY8eOkT17dqvWsXbt2uzYsYOdO3da9T6a9Q0bNozg4GDefffd6EGVUUqXLs2xY8eIiIggJCQker+rqytFihTh2LFjVo5OiDBjyyh0ctFMypcvH8HBwfzwww9UqlSJyMhIfv/9d27fvs2///7L7NmzmTp1Krdu3WLt2rUcPnwYgL59+zJr1iwOHDjAo0eP2LRpEx4eHgnep3jx4owaNYpJkybx5MkTOnbsSKlSpaxevyZNmhAWFsawYcO4cOEC169ft/o9Neuwt7enfv368fb8q1u3Lnv37qVUqVJ4eXlFP1FPmTKFwMDA6M/WYmjQF5NbRqGTi2ZSqVKlOHbsGAEBAZw9e5Zly5ZRoEABfvnlF7JmzcrKlSv59ddfqVixIh4eHtjb29O+fXu2bNmCm5sbJUqUiH6XbUrz5s0pVKgQZ8+eTYWaGZQrV46vvvqKx48fkyVLFqpXr86qVatS7f6aZXl4eHDo0KE4+8+cOYOzszNz5syhTJkyfPPNNwCcO3eOzz//nPr161s1LsM4l8zz5KK7ImtmKV26NCdPniQkJIRcuXJFt4WMGjWKw4cPc+/evVgT/FWqVAkPDw+GDBnCvXv3El0HJialFAEBAfEOaLOW8PBwmjdvznfffUeRIkXYsWMHLVu2pFixYtSrVy/V4tAso3fv3lStWpW33347umvyrVu3eOONN/j9999p3LgxwcHBrFu3jhEjRrB06VI6duyYKrFFZqAnE1P0k4tmNhEhV65cgGHq87/++otSpUoxdepUgoODY71WaNasGQ8ePGDJkiUsXLgwSaOnnZycWLx4cfTniIgIiw5ke1FgYCBhYWG0bt0aAE9PT3766Se6d++eaLdrzTa5ubnx7bff0qlTJy5dugQYZtkeOHBgdG/EfPnysW/fPlauXImbm1uqJJfM9uSik4uWbF5eXixdupRSpUqxe/fuWO+5s2TJwrZt23B1dU3SU4iIcPToUebNm4eHhwcFCxbE0dGRYsWKMX78eKskmSxZsuDu7h5rVuh27doRGRmZ6FxVmu3q3bs348ePp27dunz88cds2rSJvn37Rh9v3bo1y5cv588//+TevXs4ODhYPSaFEIGdyS2jyDg10dJEvXr1mDp1Ko0aNYpzrESJEnz++ee8++67SSqzUKFCHD16lBUrVnDmzBmePXuGt7c3mzdv5qeffrJQ5AbLly+nfPnyVKhQIU6cb7zxBoMGDWLy5MkWvaeWOgYPHsyhQ4eix0u9uNBd06ZNef78Oa6urtjZpc6PwkglJreMQre5aFbVqVMnBg0aRGRkZJK+gV1dXWMNtCxTpgzLli2jWbNm3Lt3j+DgYPLly8fFixfJmjUr//vf/8iXL1+S4wsICOD1119n9uzZgKFxN8rUqVMZNWoUjRo1IkeOHIwcOTLWtZGRkYiIxcZBaJZXqlQp1qxZwyeffEK7du3YsWNHrCQTFBTE8+fP+eOPP+jYsaNV/y4VwjMVdxqjjEo/uWhWlStXLvLkycO1a9dSXFblypWZNWtWdE8yHx8fypQpw549e5K1iFhERARTpkyJbmuJT9GiRfnrr7/44osvqFWrFiNHjqRfv34UK1YMJycn3NzcePPNN1m3bl2CK3lqaW/ixIk0adKE6tWrR3eVB8Prz88//5z33nvPYtO8JMQwiNLO5JZRZJyaaDbp6NGjiAgFCxa0SHmvvfYaixcv5tNPP2XOnDmMGDGCwMBAmjVrluSy7O3t6d+/P3Pnzk1wzikwvN7Lly8fgwYNip6JYP369YSEhODt7U3hwoV56623cHV1ZejQodHzsWm2Q0T46quvmDZtGu3atYs1X12fPn2i55gLDQ21ahyZqUFfvxbTrMrJyYns2bPHWWPFUpYsWUKFChUoX758sq6fMmUKzZo1w8PDg9KlS/POO+/EOSc0NJSrV6/Su3fvOLMFuLu74+vry7vvvkvfvn1ZsmQJzZs3Z/HixbRv3z5ZMWnW0717dypVqkTLli159uwZAwcOBAxTAYFhme2ov+MHDx5w/Phxi425UkqIUJnn9/nMU1MtTVSoUIHAwEDu379vlfJPnz5Nu3btkv2u3MHBgdGjR/P8+XPu3bvHw4cPYx3fsmULpUuXjjexgGEW6G3btjFq1CiKFSvGRx99xB9//MHAgQNZvnx5smLSrKtChQrs2rWLzz77jAkTJvD48WN8fX0pU6ZM9CvckSNHUqpUKSZOnBirHS6lIhGTW0ahk4tmVfb29hQoUIDAwECrlP/vv/8me5GvmzdvMnnyZN5+++3osTqPHz+Odc6BAwfo2bMnP/74Y7xliAiOjo6xnsxq167Nzp07GTduHLt3705WbJp1ubu7s3fvXi5duoS7uztz584lIiKCbt26Ub16dZycnDh37hx///03c+fOtcg9DQ36WUxuGYVOLppVXbt2jTt37uDu7m6V8suUKZPgb5a3bt2iQYMGjB49mpUrVxIcHExAQABTp06lVatW0csLbNy4kS5durB582YePHgQawLDvXv30qRJkwTvX7hwYR4+fMjt27dj7a9YsSKvvfYaAwYM4I8//rBIXTXLKlasGCtWrGDjxo0EBwdTtGhRmjdvzrVr15g+fXqSl3owRTfoa5oFFS5cmLJly/K///3PKuW3bNmSdevWxXniAMO0Lv/88w/ff/89S5cupVixYlSrVg1fX1+GDBnCjRs3mD9/fvTsAUWLFsXBwSF6GWQwvIu/cuVKgvd3cHBg6NChceoXGRnJtm3baNWqFaNHj05wOnct7VWvXp3ly5ezfft2hg0bZrX2QYAIJSa3jEInF82qHj9+TEBAAN27d7dK+Q0aNKBq1arxdiN96aWXWL9+PW3atOHPP//k0qVLbN68mR9++IGuXbvG+SFy6NAhIiIieO2116L3ffLJJ0yZMoVFixYlGEPv3r3566+/Yu1bunQp2bJlY86cOWTLlo2DBw+mrKJauqdH6GuaBU2YMIHu3btTs2ZNq5R///59Tp48Gd1F+EWhoaFky5YNMCyHm9jMzGfPniVHjhzY2/830K1SpUqsXLmSUaNG8e+//8Z73ZEjR+jTp0/0Z6UUX3zxBVOmTMHOzo62bduybdu25FRPy2AilZ3JLaPIODXRbMr58+d5//33WbNmDZ999pnV7jNjxgyUUnTt2jXe46VKlcLHx8esOcmuXLmCo6NjnP3NmzenTp060fOMhYaGopTi3r17PH/+nL/++ovSpUtHnx81SC9qBc3WrVvHu7yulrkYJq7UTy6almyRkZH06tWLsLAwNm/enKxpWcz18ccf4+Hhwfjx4+M9XrlyZYKCgsiVKxeVK1dOdBR906ZNCQoKijcRjR07lg8++IDQ0FAqV65Mnjx5KF68OCVKlGD79u08ePCAQYMGERISEj0Db1T36AYNGnD27FkePHhgmUpr6ZJCCFf2JreMQicXzeKePHnChQsXmDVrllkLhKVEaGgoT5484bvvvou1nkyU7Nmz89tvv1G2bFkuXrwYb8N/lBYtWhAeHk5AQECs/ffu3ePkyZMUKlSIwYMH4+vry5o1a3j48CHr16+nSZMmfPvtt/z9998ULlwYZ2dn3nvvvejrs2bNSoMGDVi+fHmiMwFoGZtSEKHsTG4ZRcapiWYzhg0bhqOjo8V/kP7444+4u7tTvnx5PDw88PT0pGrVqtHzlu3bty/e6yZMmEDnzp15/Pgx+fPnT7B8ESFHjhxMmzaNyMhI7ty5w/Lly6lXrx6HDx8mf/78KKXw9PSkUqVK2Nvb4+Xlxfr16/H19eXAgQP4+fnx66+/xmq3AcOTz/fff0/v3r0t9z9ES2dMD6DMSIMoM86IHc0mBAQEsHfvXqpXr879+/ctNqcYGNpE2rdvz+DBg3n+/DkRERHY2dlRqFAhXFxcWLFiBc2bNwfg0aNHrF69mp9++olbt27x448/mrVmR8mSJVmyZAn16tXDz88PLy8vZsyYQYcOHRKdBUBEcHZ2TvB406ZNWb58Of379096xbUMQUGGejIxxaaSi4i0Ab4B7IGFSqkpLxwX4/F2QCjQTyl1zHisF/A+sEQpNSs149YM8zDdunWLV155hcGDB0e3Tfzvf//jjTfeiF7BMiVKlizJqFGj8PPz4/fff491rF+/fqxfv54WLVpQuXJl+vXrh4uLC++99x4dOnQwe5lle3t7tm/fzl9//YWDgwOtWrVKcdxR/Pz84jzRaJlLRmqwN8VmkouI2ANzgJaAP3BYRDYopWIOv24LuBu32sBc458AvYCawHIRyamUCkm14DVmzZpF0aJF2b17NxUqVACgR48eDBgwgHPnzjFnzhyeP39OaGhoor/hJ0Qpha+vL0+ePGHDhg1xji9evJijR4/So0cPsmbNSu3atfnxxx+TtQiUk5OTxSed9PPzY+jQoaxdu9ai5WrphyJjLQZmis0kF6AWcFkp5QsgIiuBzkDM5NIZw5OJAg6ISB4RcVFK3YLol5UqxtdaKlFKkSNHjujEAkR3323YsCF58uQhd+7cBAcHs2jRogS7DickPDycadOmcf78+QSfQmrUqIGvr2+K6mEtPXv2ZOzYsdHdk7XMRwHhGWjuMFNsqaauwI0Yn/3576kksXNcgVvAr8ARYJlSKji+G4jIIGAQGNbo8Pb2tkjglhC1Nkh6FBkZSf78+cmdO3e8dZg/fz7Pnz8nPDw8+glk7ty5ZM+enWLFipn1dKGUYvr06dy6dQsRwd/f3wo1sd7fw4gRI3j48CE//vgjjo6OODg44OTkFD3VuyWl539LkP7jT1jGWq/FFFtKLvH9X39xwEGC5yilfgZ+TuwGSqn5wHwALy8vldiEhKnN29s70QkSbdnPP//Mrl278PT0NKsOjx49omDBgnTt2hUfHx+2b99uciyMUoqZM2fy999/s27dOquteW6tv4fIyEgOHjyIv78/AQEB3Lx5k++++46rV69y6tQpKleuTJEiRSxyr/T8bwnSf/wJUZChRuCbYkvJxR8oFuOzG3AzGedoqejZs2f89ttvtGnTxuxrcufOTbly5Xjvvff44Ycf+Oijj0xOay4irF27lnLlynHu3Dk8PDxSGnqqsrOzo27durH2rVy5kuHDh3PkyBEePHhA1apVeeWVV+jdu3esdd61jMNSTy4p6fxkPG6P4U1PgFKqg0WCeoEtpdHDgLuIlBQRRwwN9C+23G4A+opBHeChsb1FSyNffPEF/v7+SZqY8unTpwQGBpI3b16mTJnCtm3b6NevH8+ePUv0OkdHRxo2bJhhJoHMmjUr165d4/jx4wQGBvLOO++we/duSpYsybBhwyy6SJWW9pQSi8wtFqPzU1ugIvCqiFR84bSYnZ8GYej8FNMo4HxK65QYm0kuSqnnwHBgK4ZKr1ZKnRWRISIyxHjaJsAXuAwsAIalSbBaNGdnZ+rVq5ekBbuWLFlC9erVKVWqFPny5ePkyZP4+vrGWtc8IQ4ODhlmlPvs2bPZtm0befLkIWvWrHTu3JlVq1Zx9uxZChYsSPPmzWnVqhV37txJ61A1CzA06Ftk+pfozk9KqWdAVOenmKI7PymlDgB5RMQFQETcgPbAQotVLh42k1wAlFKblFJllVKllVJfGPfNU0rNM36tlFJvG49XVkodSduItfLly3P+vPm/AP3999989NFHTJ48OXpfzpw5mTRpEpMnT+b58+eJXu/v70/RokWTHa8tadWqVbyvv4oWLcqnn37K1atXKVeuHAMHDjRr4k3N1om5078UEJEjMbZBLxSUUMcmc8+ZhWFMoFV/S7OlNhctHdqzZw/58uVj//79cVZjfNHZs2fp3r07v/zyC9WqVYt1rFGjRhQtWpTx48fTsWNH1q5dy9mzZ2nSpAm3b9/m3XffpVSpUly+fNlqq1raGicnJ7766ivKly/Pvn37KF26NDdu3KB69ep6MGY6ZGjQN6vN5a5SyiuR48nu/CQiHYB/lVJHRaSJOcEkl009uWjpT8eOHdm9ezedO3fm5s2b8b7CCQ0NZdmyZbRt25avv/6ali1bxlvW3LlzCQ4O5v3330dE6NevH6GhoeTJk4fatWvz888/4+/vT4kSJaxcK9thZ2fH3bt3GTRoEBUqVOCNN96gaNGivPXWW2zatImwsLC0DlFLAgtNuZ+Szk/1gU4ichXD67RmIrIsufVJjH5y0VKkfv367N27l9mzZ2NnZxdr/q6wsDDeeecdVq5cSZ06dZg7d26iI98rVarEDz/8EO+xfPnyMW7cOFxdXeNdcyWjsrOzY+zYsdSpU4fGjRvj6OiIr68v69evZ/LkyfTu3ZsSJUrw9OlTwsLCUEoxbdo0IiIi9NONjbHgCP3ozk9AAIbOTy/OiLoBGG4cjF6b/zo/fWDcMD65vKeU6oMV6OSipVjx4sU5cOAADRo0iNWGMGPGDC5fvszp06dxdX3xlbD5wsLCmDNnDn379uXkyZMWiDj9sLOz4+OPP461r1SpUowZM4YxY8Zw+/Ztbt68SdasWcmaNSsPHjzg8OHDNGzYkIULF1Kx4oudiLS0FGmBl0VKqeciEtX5yR5YFNX5yXh8HobOT+0wdH4KBVJ9xlSdXLQUCQ0NpXv37pw+fTrWaHM/Pz9mzpzJkSNHUpRYAL7//nv8/PwoWrRoouuxZEaFCxemcOHC0Z9LlizJo0eP6NOnD40aNeLDDz9kzJgxaRihFkUpCI+0TEuEUmoThgQSc9+8GF8r4G0TZXgD3hYJKB66zUVLtoiICFq3bg0YGp9jdhGePn06w4YNs0j7SLly5ShTpgyTJk2iTJkyKS4vMxg2bBhHjx5lwYIFfPHFF2kdjkbUa7GUj3NJLzJOTbRUt337dp48eUKLFi1wdnbG39+fQ4cOAYYpPF5++eUUle/n58cPP/xA7969CQgI4PHjx1SuXNkCkWcOxYsXZ+fOnSxZsoSpU6emdTgahhH6praMQr8W05Jt6dKl9OvXj44dO5IrVy5y5MhBp06d6NOnD8+ePcPT0zNZ5T58+JCRI0eyefNmWrduzapVq2jQoAGPHj3CxcXFwrXI2FxcXNi5cydNmjTh2bNnjB07lqxZs6Z1WJlSEroiZwg6uWjJVqxYMS5fvkzx4sV566238Pb2ZsSIEWzdupV//vknWb2Vdu3aRb9+/Wjfvj1+fn7kyJEj+ljMrzO7mecTXsSsGh/G+uzq6srOnTsZNGgQJUqU4OWXXyZfvnx4enrSs2dPa4eqRZMM9drLlMxTU83i3n77bZYsWcKjR4+i93300Ufs2bMnViOzuUJCQujUqRPz5s3j+++/18nEgooVK8bmzZvZtWsXlSpVIkeOHHz88cd8//33aR1aphKJmNwyCv3koiVbsWLFcHd3Z/v27XTr1i3F5R0/fpzixYvTtm1bC0SnxadChQrRC7o1b96cwYMHM2yYnqIvNRh6i2WesUf6yUVLtv3793P69GkaN25skfK+/PJLRowYYZGyNNNq1KjBlStXePjwYVqHkilEDaI0tWUUOrloyVahQgU6duxIvXr1OHHiRIrLs7e3p1ChQikPTDOLg4MDNWrU4MCBA2kdSqaRmV6L6eSiJVuePHlYtWoVn3zyCa1btyY0NDRZ5SilGDNmDAcPHkzxgEstaaKm79GsL6q3WGZ5ctFtLlqK9e7dm1y5cnHp0iV8fHwoW7Zskq4PCQnh+++/JyAggPz581spSi0+DRo0YMaMGWkdRqahe4tpWhJ17NiRAgUKMH/+/CRfO2vWLGrVqqUTSxpwdXXl1i29mGtqUEp4ruxMbhmFfnLRLCZ//vwsX76cTz/9NEndiPPmzZthFgBLLe9U2JbgMe/b3maXc/ToUapXr26BiDRzZKTXXqZknDSppbmsWbPSqlUrhg4dmqTr+vTpw5YtW/Ryvmng8OHD1KxZM63DyBQyW5uLTi6aRc2dOxdvb2+OHTtm9jV58uThtdde45133tHL+aYynVxSl04umpZM2bNnZ/DgwcybN8/0yTFMnz6dM2fOsHDhQitFpr0oODiYc+fOxVlyWrMOPc5F01Jo4MCBrFmzJkmD87Jnz07dunXZu3cvQUFBsY5FRkby77//WjhKbdy4cfTq1Yvs2bOndSiZhh7nomkpUKRIEVq2bMnSpUuTdF3BggU5d+4clStXjp6vLDQ0lF69etGqVcITNUZRShEQEMCuXbtYsGABgYGByYo/M9i4cSN//PEHX3/9dVqHkmkoBc8j7UxuGYXuLaZZxdChQxk+fDhvv/02Iub9NvbZZ5/x2WefMXDgQDp06ICHhwf79+/HycnJ5AzLx48fp2vXroSGhlKuXDkuXrxIgQIF6NKliyWqk6EcPXqU/v3788cff8Rallqzvoz02suUjJMmNZvSpEkTIiMj2bNnT5KvnTVrFgMGDKBSpUqMHz+eadOmJfjqJjg4mE8//ZRWrVoxdepUbt++zZ49e3BxceGll15KaTUynGvXrtGpUyfmz59PnTp10jqcTCWztbnoJxfNKkSEUaNG8dVXXyV5YstcuXLRr1+/6M9bt26NTi5PnjzB0dERe3t7Tp48SZs2bWjevDmHDh2iZMmS0dfY2dkRFhZmkbpkFEFBQbRr1473339fP9GlEZWBkocp+slFs5o33niDQ4cOce7cuRSVIyIcPnyYFi1aULJkSbJly0aJEiVo2LAhX375JcuWLYuVWAA8PDy4ePFiiu6b0bzxxhu0bNmSUaNGpXUomVZmatDXTy6a1WTLlo3hw4czY8YMFi1alOxyWrZsya5du/D19eXWrVusXr2axYsXkyNHjgRnUb59+3ayFizLqA4dOsTx48dZs2ZNWoeSaSml21w0zWKGDRvG+vXruXnzZrLLEBE8PT3p0qULAwcO5NKlSzx8+DDR6fk9PDyYMmVKrFUyM7NJkyYxbtw4HB0d0zqUTEyIiLQzuWUUGacmmk3Kly8fffv2ZebMmRYpz8nJidGjRzNt2rREz5s+fTqVKlWiRYsW3L9/3yL3Tq8OHz7MkSNHGDBgQFqHkukpJSa3jEInF83q3nvvPRYtWoS/v79Fyhs0aBBbt27lxo0bCZ5jZ2fH999/T6NGjahatSp9+vRhypQpnD9/3iIxpBchISH06dOHGTNmkC1btrQOJ1PTc4tpmoW5ubkxZMgQ/ve//1mkvKhXXVmzZk30PBFh+vTprF+/nhYtWhAYGEiTJk3Yv39/ppjDLDg4mCFDhtCgQQN69+6d1uFoytDuYmrLKHSDvpYqxo0bR9myZTl+/HiK57I6ffo0tWrVomDBgibPFRGqV68ePa18vXr1ePXVV8mWLRtz586lSZMmKYrFlrVr1w4nJyd+//33tA5FM8pIvcFM0U8uWqrInTs37733HpMnT05xWUFBQckeWf7KK6/g5+fHjBkzeOWVV8idOzeVKlVi8+bNKY7Llty4cYNz586xefPmJK2to1mPymQN+vrJRUs1//77r0VGzT958iRF7QciQvv27bl+/TphYWHs3buX3r17c/z48RTHZit2795Ns2bNcHBwSOtQtBgy0msvU6yWJkVkkYj8KyJnYuz7REQCROSEcWuXwLVtROSiiFwWkfEx9hcVkZ0i8ruI5DTuKyci3sbyzotI0tfZ1VJFhw4d2LhxI5GRkSkqJzw83CI/NLNmzYqzszPt27enbNmyGWq5Xzs7O7Jk0b872hrdW8wyfgLaxLN/plKqqnHb9OJBEbEH5gBtgYrAqyJS0Xh4JDACWAj0Me77NkaZFYDvLFsNzVIaNmxI1qxZWb16dYrK2bFjB8WLF7dQVAaNGzdm+fLlFi0zLWXLlo2nT5+mdRhaDIYGe51cUkwptQdIzgCDWsBlpZSvUuoZsBLobDxmD0Qat6i/BRcguo+rUup0soPWrKJN7v60yd2fts4DyHrJjTd698czW2Pa5O6fpHIiA8uye30xjhxcz6hXFxEZWDZ6S6n8+fNz9uzZFJdjK7JmzaqTiw3KTF2R0+K5ebiI9AWOAO8qpR68cNwViDmAwR+obfx6NrAUeAhE9a2cCewUkX3ANmCxUioovhuLyCBgEECJEiXw9vZOcWUsJSQkxKbiSY6E6tDt09gTV0bShceRj3AUp6TV+flInjkqRr7zjMOXnYjV8eZCEsqJh4ODA2+++WaG+XtQStGlS5d0WZeM8HeQkMzU5pLayWUu8DmG8USfA18BLw4bji91KwCl1DWgUawDSi0Wka0YXsF1BgaLiKdSKs6UuEqp+cB8AC8vL2VL3VC9vb3TfbfYhOowpVPcJ5SwyFBOP91LGa9iLFu2jDJlypgsPzJwED+tesQf6x4x6lW3WMfsivgkO26AtWvXEh4ejqura4b4e3BwcODLL79k//79aR1OkmWE74X4KITIDNQbzJRUralS6rZSKkIpFQkswPAK7EX+QLEYn92ARCemUkrdVEotUkp1Bp4DHpaKWbMOJ7vs1MjWkt69e1O3bl1+/PFHswY2elZ05JJfOOHhlv0VsG3btmzcuJHnz5/z8OFDnjx5kuKOB2nJ39+fokWLpnUY2guUGVtGkarJRURcYnzsApyJ57TDgLuIlBQRR6AXsCGRMtuIiIPx6yJAfiDAclFr1iIijBw5kl27dvHtt9/SqVMnfH19E72mWuWslC7uwK+bQiwaS9OmTQkODubs2bMUK1aMvHnzYm9vz3vvvWfR+6SWCxcuUL58+bQOQ4tJN+hbhoisAPYD5UTEX0QGAtNE5LSInAKaAu8Yzy0qIpsAlFLPgeHAVuA8sFoplVhLayvgjIicNF4zVimlF09PRzw8PDh06BB169alZs2afPzxxzx+/DjB8x0dhcehln2qyJ49OydOnMDT05NHjx7x9OlThg0blm5/+79w4QIVKlRI6zC0F1no0SWh4RoxjouIfGs8fkpEqhv3ZxWRQyJyUkTOisinlqlYXNbsLfaqUspFKeWglHJTSv2olHpdKVVZKVVFKdVJKXXLeO5NpVS7GNduUkqVVUqVVkp9YeI+Y5RS5ZRSnsZtmbXqpFmPk5MTH374ISdPnuTKlStUqFCB1atXx3lVtu/wE3yuPKNPt9xWjykkJCTdjm6/ePGifnKxQZZ4cjExXCNKW8DduA3C0N4NEAY0U0p5AlWBNiJilfWu9SgrM3XbNyzBY+vqfZ+KkWRsbm5u/PLLL+zZs4chQ4Zw584d3n777ejjn0y/xwej8uHoaP3XBz179qRv376Eh4czfPhwq9/Pknx8fHB3d0/rMLQYFBAZaZF/t9HDNQBEJGq4RswlXzsDS5Tht7MDIpJHRFyMv9BHvVN2MG5WaerRyUWzui2PFif5mkaNGvHhhx8yc+ZMOnfujJubG8f8f+Hg8aa8Oewb7Ir0skKksbVr146DBw9SvXp1evXqRYECBax+T0sIDw8nW7ZsODs7p3UoWkwKMK9NpYCIHInxeb6xp2uUxIZrJHaOK3DL+ORzFCgDzFFKHTSvAkmTefrFaelOz549efnll6lWrRoTJ05kwIABDBgwgHfffTfVVpgsXbo0LVq04M8//0yV+1mCv7+/nmLfRpk55f5dpZRXjO3FKa0SHK5hzjnGHrtVMfTErSUiVuldq5OLZrMcHBz4+OOP2bFjB7NmzaJfv37MnDmT8uXLs3fv3lSLIyIiIt0stBUZGcmDBw/4/PPP0zoULT6WadA3Z7iGyXOMg829iX+arhTTyUWzeVWqVMHLy4vKlStjZ2eHh4cHZ87E14vd8pRSHD16NHo9GFt3584d7O3tyZ3b+h0etKQy3ZhvZldkc4ZrbAD6GnuN1QEeKqVuiUhBEckDICLZgBbABYtVMQbd5qKlCyVKlMDPzw8wrMnSpUsXatSoQfPmzVNcdkREBBcvXuTkyZM4OjqyZMkSatWqRfny5fnzzz/JnTs3pUqVSvF9UsONGzdwdHRM6zC0hFig6Vwp9VxEooZr2AOLlFJnRWSI8fg8YBPQDrgMhAJR02S4AD8b213sMAz12JjY/UQkB/BEKRUpImWB8sBmpVR4Ytfp5KKlCyVLloxOLvXr12fSpElMnTo12cklMjKSjz76CG9vb06fPo2LiwtVq1alQ4cObN++nXfffZchQ4bg7+/PwIEDsbNLHw/5Pj4+OrnYKgXKMr3FMM4ov+mFffNifK2At+O57hSQ1KVg9wANRSQvsAPDvJA9gdcSuyh9fMdomZ6rqys3b/73yvjixYs0bNgw2eVt3LiRP//8k6lTpxIQEMClS5cIWgfP7kZw+5cwKtytzbxJP/LTTz/xzbvzTBdoAx4/fsyECRPSTa+2zEnM2GyOKKVCga7Ad0qpLhjG1yRKP7mYSY9lSVs5cuQgNDQ0+vPWrVtZtGhRsspSSjF58mQmTJhAo0aN4j3HSbJRWlXkLrdwJn+y7pPaxo8fT7169XQXZFuWPicPExGpi+FJZaBxn8nckegJIjImseNKqa/NDk/TUiB79uyxkkuOHDm4e/dussry9fXl6tWrdOnSJdHzckle8qqCRBKRrPukJm9vb3777TdOnz7NyZMn0zocLSHpM7mMBj4AfjO27ZQCdpm6yNRrsVzGzQsYimEQjiswBDMeizTNUrJnz86TJ0+iPw8ePJi5c+cmckXCgoKCKFKkCPb29ibPzUdhQniYrPukprFjx/Ldd9+RN2/etA5FS0jUIEpTm41RSu1WSnXCsJ4WxoUcR5q6LtHkopT6VCn1KVAAqK6Uelcp9S5QA0O/aU1LFdmyZYs1mWWvXr3Yv38/V69eTXJZx44dM3verUieY2/jb48jIyM5e/YsLVq0SOtQNBPMHERpU0SkroicwzCRMCLiKSIm2wnMbdB/CXgW4/MzoERSg9S05Hr48GGssRvZs2ene/fu/Prrr7HO27NnDydOnOD58+cJlrVlyxbatm1r1n0jiLD55HLz5k2cnZ3JlStXWoeimRIppjfbMwtoDdwDUEqd5IVFG+NjbnJZChwSkU9EZCJwEFiSvDg1LemuXbtG8eLFY+1r2rQpu3fvjv68atUqevXqxauvvkrevHlp0qQJp06dYtOmTbi5uVGmTBlKlCjBr7/+SuvWrc26bwQRPOAO69evZ/fu3bzzzjscOHDAonVLiRs3bjB06FBq1Ypv3T3N1ogyvdkipdSNF3aZbIg0K7kYp73vDzwAgoD+SqkvkxqgpiVXfMmlcePG/P3330RGRnLq1CmGDx/Opk2bOH/+PNevX+fll1+mV69efPbZZ3z22Wds2rSJzz//HBcXF86fP2/WfV+iDLnIw/z58xk6dChZsmShV69evPPOO9aoZpJcvHiRatWq4eXlxerVq9M6HM0Uc6Z+sc3kckNE6gFKRBxF5D2Mr8gSY1ZyEZGXgLvAb8btnnGfpqWK69evx0kuRYoUoWDBgrz22ms0adKEL774gqpVqwKQN29eRo0ahaenJwEBAfTt25eyZcvy+uuvs3z5cl555RX++eefWOVtj1wT5745JDelpRKbNm3i3LlzTJ8+nRMnTrBw4cJUmzwzppCQEM6fP8/58+eZM2cOAwYMYOLEiTg5OaV6LFpSmdGYb4MN+hg6cL2NoTOXP4Z1YOIM0HyRuS+T/+S/nJoNKAlcBColNUpNS45r167x0ktxf5/58ssv8ff3x8fHJ86qkSLCggULuH79Olmy/PdPvWnTpixbtowuXbrwxx9/ULv2f7OVu9coFW+SiSlPnjwUKVKEwMDAVJnD69y5c2zatIktW7Zw8OBBXF1dAXB0dGTVqlVWv79mQbb5ZJIopdRdTIzGj49ZyUUpVTnmZ+OSmYOTejNNS674XosBdOvWjbCwMCZMmECdOnEX1MuZMycVK8btNd+qVSsWLVpEp06d2Lx5c5InpixUqBC3b9+mbNmySbouKR49esTQoUPZvXs3HTt2ZMSIEfz222+64T49s+zq3KlCRBYTT1pUSg1I7LpkdYNRSh0TkZrJuVbTkurZs2fcvn0bN7f4e7/v3buXChUqJHnakw4dOjB37lzatWvH2LFj401OCSlfvjy//vorGzdu5KWXXmLo0KEWmX8sIiKCgwcPsmHDBlasWEHbtm3x8fEhe/bsKS5bS2PmLxZma2JObJkV6ELcKf7jMLfNZUyM7T0R+QW4k7w4NS1prl+/TtGiRXFwcIi1/+nTp8yaNYvXXnuN/v37J3B14rp27cqKFSvw8/Nj0KBBXLx4MXqCzMS8/fbbXL58mbCwMKZPnx6n/SY5Lly4QOXKlRkyZAhZsmRh3bp1zJs3TyeWDCQ99hZTSq2LsS0HXgFMLjBm7pNLzOfw5xjaYNYlPUxNSzpfX19Kly4da19ISAiVK1emSpUqbN++ncqVKydwtWlNmzaladOmREZGsmbNGmrVqsWMGTPo27cvIvH/plm9enX++OMPAE6fPk1YWFiy7w+wbt06hg4dytSpU5OdKLV0wAaTRzK4Yxj7mChzk8s5pVSsVk4R6QEk3vKpaRbg6+sbZz2VBw8eEB4ezu+//26x+9jZ2VG4cGF27NjB66+/zuzZsxk9ejQ9evRIdBp7X1/feDsbmOurr77iu+++Y/PmzdSoUSPZ5WiaNYhIMIa0KMY/A4Fxpq4z9yXxB2bu0zSLu3LlSpzkkiVLFiIirDOhZJUqVTh+/DgTJkxgwYIFiY7mv337Ng8ePKBMmTLJuteePXuYMWMG//zzj04smUA6fS2WSymVO8afZZVSJt9cmZoVuS2G1cxcReTbGIdyY3g9pmlW5+vrS82asfuPZMmSJdEpXlLKzs6Ojh070qpVK5ydnXn48GG8U9lv2bKF8PBwBg4cyKJFixJ8jRafe/fu0adPHxYtWhTdvVjLwBS2Or1LvIy9ghOklDqW2HFTr8VuYlh1rBNwNMb+YCDthyhrmYK/v3+cnmLWTi5RfvvtNypVqpRg99/NmzfTrVs3zp07x8yZMxkzJtFVKmKZOHEiXbt2NXueMy0DsMEnk0R8lcgxBTRL7OJEk4txgrKTIrJcKaWfVLQ0cffuXQoWLBhr39WrV8mRI4dV7/v06VM++OADFi9enGA3Y39/fyZNmoSzszPdunVLUnI5fPgwX3+tl0TKTGzxtVdClFJNU3K9qddiq5VSrwDHReL+b1FKVUnJzTXNHHfu3ImTXPbs2UOVKtb95/ftt99SpUoVmjRpEu/xq1evcvr0aSpWrEhQUJBZ68PEdOnSpWS31WjpVDpKLjGJiAeGNbyyRu1TSiU6ebGp12KjjH92SFlompY8YWFhPH36NE57R7169Xj33Xe5e/euVdaMv3fvHl988QVbt26N9/iVK1do1qwZX375JQUKFOCbb75Jchzly5fnzJkzFC5c2BIha+lBOkwuxpnwm2BILpuAtsBeTMyMb+q12C3jl8OUUrG6nonIVMzojqZpKXH37l3y588fq6H8woULdO7cmSVLllglsYBhpHyzZs1o1aoVXl5e1KxZk/Lly1OoUCGOHj3KggUL+Pjjj3n55Zdp27YtT548Yd26pA39KlOmTLIWO9PSJ1vtDWaG7oAncFwp1V9ECgMLTV1kblfklvHs062QmtVduXIl1oSUERERvPrqq0yYMIHevXtb7b6FChXit99+IzAwkDFjxuDs7MzOnTuZNWsWjx8/ZtmyZbi5ueHp6UmNGjXYuXNnnIkzTfHx8aFcuXJWqoFmk9LnYmFPlFKRwHMRyQ38C5QycY3JNpehwDCglIicinEoF5Dy+S40zYRFixbRq1ev6M/z5s3D2dmZwYNTZ97U7Nmz06FDBzp0iP1meNmyZbz//vusWrWKRo1MLsoXh1KKCxcumL3cspYxpNMnlyMikgdYgKHXcAhwyNRFptpcfgE2A5OB8TH2Byul7icvTk0zz71791i/fj0zZswA4P79+3zyySd4e3snaTyJpS1btoxx48bx119/xTvjsjn++ecfihQpYrXXepqNSofJRSk1zPjlPBHZAuRWSp1K7Bow3ebyEHgIvAogIoUw9BbIKSI5lVLXUxa2piXs559/plOnTtE/gNetW0fTpk2pVCntlhH65ZdfGDduHNu3b092Yrlz5w6jRo1i+PDhFo5Os2nptM1FRH4HVgG/K6WumnudubMidxSRS4AfsBu4iuGJJrFrsorIIRE5KSJnReRT4/58IrJdRC4Z/8ybwPVtROSiiFwWkfEx9hcVkZ0i8ruI5DTuKyci3iJyQkTOi8h8s2qv2bSrV69SrVq16M+rVq2iZ8+eaRbP33//zejRo9m2bVuyE0tgYCANGzakbdu2vP22ycX8tIwmfS5z/DXQADgnImtEpLuIZDV1kbkN+pOAOoCPUqok0BzTbS5hQDOllCeGZTHbiEgdDK/Xdiil3IEdxH7dBoCI2ANzMHQaqAi8KiJR380jgREYeiv0Me77FpiplKqqlKoAfGdmvTQbVqhQIe7cMazsoJRi9+7dtG7dOk1iuXLlCj169GDZsmUpenL68MMPadeuHZMmTUrTV3ta2pBI05utUUrtNr4aKwXMxzDl/r+mrjM3uYQrpe4BdiJip5TahSFhJBaQUkqFGD86GDcFdAZ+Nu7/GXg5nstrAZeVUr5KqWfASuN1APYY1nOLxDBLJ4ALhrWdo+592sx6aTYsZnIREXLnzs2TJ09SPY6goCA6dOjAxIkTadWqVbLLOXPmDBs3bmTChAkWjE7TrE9EsgHdgCFATf77GZ7wNUqZfg4Tkb8wJIHJQAEMWaumUqqeievsMfQuKAPMUUqNE5EgpVSeGOc8UErlfeG67kAbpdSbxs+vA7WVUsNFpDiwFENbUG+lVLCI9AdmAfuAbcBipVRQPPEMAgYBlChRosbixYtN1j21hISEkDNnzrQOI0UsXYd79+7x6NEjSpYsCcDZs2cpXbo0WbOafCJPtvjqcPHiRZ48eYKjoyNlypRJdPr9xFy+fJncuXNTqFAhS4SaoPT+b8kW42/atOlRpZRXSsrI6lpMFR9senogn4ljUnwvSxKRVUBtYAuGtpfdxq7JiTJ3PZfOwFMMk1W+BjgDn5m6SCkVAVQ1dmP7zTiFgDnie1+gjGVeA2L1/VRKLRaRrUAbY6yDRcRTKRX2wnnzMTzW4eXlpRKa1iMteHt7JzjNSHph6Tq88sortG7dmiZNmnDnzh26devG6dOnkzyeJClerMODBw/o0KED+/fvx9vbm/79+7Nx48ZYbUHm2L17N19++SXnz5/HycnJwlHHlt7/LaX3+BOUThv0MTylHMLQ7jIc8BSReUqpp4ldZFZyUUo9fuFGSaKUChIRbww//G+LiItS6paIuBD/uzt/oFiMz26YWLNZKXUTWAQsEpEzGJbhPJrYNZrtioiIYMuWLcyePRuAqVOn0qtXL6smlvjs3LmThg0bUrlyZSpXroyLiwvNmzenUKFCfPLJJ7HG4CQkPDyc9957j0mTJlk9sWg2Ln0ml37AIwxt22DoPbwU6JHYRaYGUUatQBbnEIZmldyJXFsQQ1tNkPF9XQtgKrABeAOYYvwzvqUEDwPuIlISCAB6AQkOxxaRNhg6CYSLSBEgv/E6LZ2ys7MjIiICJycnAgMDWbRoEWfOnEn1OPbs2RPrt+ju3btTr149fHx8GDRoEFu3buW7775L8DVOREQEffr0wcXFxaxEpGVw6TO5lDN2zIqyS0ROmroo0Qb9GCuPvbjlSiyxGLkYgziFIVlsV0ptxJBUWhq7Nrc0fo7qYrzJeN/nGB6/tgLngdVKqbOJ3KsVcMZY4a3AWKVUoKnKa7ZLRChVqhR+fn7cunWLwoULp/pTC8C+ffuoVy9202LRokVp0qQJx44dQ0SoVasWly9fjnNtREQEb731Fvfv32f16tUJTtuvZQ5C+uwthmFW/DpRH0SkNmbM0GJum0uSGUdwxnkxbex11jye/TcxrHoZ9XkThhk4zbnXGMD8hTS0dKFUqVL4+vrSqVMnAgICuH//Pvny5Uu1+z958oRz587h5RV/22rOnDlZtGgR8+bNo379+qxdu5aGDRsChraa1157jbCwMDZs2GDVTghaOpF+21xqA31FJGrQ/EvAeRE5jeENVrxrX1gtuWhaSpUqVYorV66QJUsWatasyf79+2nfvn2q3f/+/fs4OzuTLVu2RM8bMmQIxYsXp2fPnhw7dozChQvTrl07atasyddff02WLPrbTDNKn8mlTXIu0s/pms169OgR2bNnB6B+/fr880/qzpVqZ2dHZKR57ynatm1Lv379GDRoEIcOHeLff/9l1qxZOrFosVlohH5CM5jEOC4i8q3x+CkRqW7cX0xEdhlnMjkrIqPilv5CyEpdS2xL6DqdXDSbtXv3bho3bgwYksu2bdsIDw9Ptfs/fPgQc8aBAURGRnLixAnKlCnD999/z5AhQ3QbixZH1JouiW0my0h8BpMobQF34zYImGvc/xx41ziTSR3g7XiutQj9r1+zSQEBAQQFBUXP4dWkSROyZcvGvHnzUi2Gr7/+moEDB5p17sOHD9mxYwdlypRhx44dDBgwwMrRaemSZZ5cEpvBJEpnYIlxppQDQJ6oISBKqWMASqlgDB2mXFNcr3jo5KLZpN27d9OwYcPo3/6dnJyoV68ejx8/NnGl5Zw/f54GDRqYdW7evHnx8vJi4sSJ7Nixg/z581s5Oi3dUWb3FisgIkdibINeKMkVuBHjsz9xE4TJc0SkBIZOVwdTXrm49AthzSZt3LiRFi1axNqnlErVyR4DAwNZsmQJbdq0MfmKKygoCF9fXzZt2qRXl9QSZt6TyV0T078kOIOJuecYZ5RfB4xWSj0yK6ok0k8ums15+PAhmzZtijW9fmRkJJs3b6Zy5cqpFkdQUBC///47tWrVon79+nzyyScEBwfHOe/ChQt07dqVTp06UbNmzVSLT0t/LNHmgnkzmCR4jog4YEgsy5VSvya3Lqbo5KLZnNWrV9OsWbNYqzSuW7eObNmy0bZt21SL44cffkBEKF26NJMmTeLKlSu4u7vTqVMnqlSpwujRoxkxYgQNGjSgffv2fPedXulBM8EybS7RM5iIiCOGGUw2vHDOBgxjU8Q4APKhccotAX4EziulvrZAjRKkX4tpNufnn3/m/fffj7Vv8uTJqb4GSteuXTl69Chdu3Zl5cqVLFmyhNOnT3PhwgWKFy/Otm3bePjwIefPn6dgwYKpFpeWTlloMTCl1HMRiZrBxB5YpJQ6KyJDjMfnYRiA3g64DIQC/Y2X1wdeB06LyAnjvg+Ng9YtSicXzaZcuXIFHx+fOE8oN2/epEaNGqkeT4UKFTh48CD58+dn2rRpVKlShSpVDAOSa9eunerxaOmXYLkR+vHNYGJMKlFfKyDOUqdKqb3E3x5jcTq5aDZlzZo1dO/eHQcHh1j7HRwcCAsLS+Aq6woKCiJfvnw4Ozunyf21jCOdTv+SLLrNRbMpa9eupXv37rH2zZkzhyxZsqRZ9948efKQL18+hg4dmqqDOLUMyEIj9NMDnVw0m+Hn58f169dp1Oi/teAWLVrEjBkz2LVrFzly5EiTuHLnzs3Bgwfx9vbG29s7TWLQMohMlFz0azHNJjx58oSffvqJl19+OdZ8XGvXrmXmzJmUKFEi7YIDcuTIQUREBHnz5jV9sqbFJ/3OipwsOrloNuH111/n8OHDrFu3Ls6xF9tf0sLs2bNxcXGhevXqaR2Klp7p5KJpqcvBwYHJkyfHWTvFwcGBJ0+epFFUBlevXuXzzz9n3759ejJKLUVsdDEwq9DfKZpNyJMnD0FBQXH216xZM9Wn2o8pIiKCwYMH895771G2bNk0i0PLGCw0Qj9d0MlFswn58+fn9u3bcfa3atWKv/76K9XjuXfvHtOmTcPd3R2lFO+++26qx6BlMOY05meg5KJfi2k2oXbt2nz77bex9j179oy1a9cSHBxs0UkrHz16xNatWylSpAiurq6EhoZy7do1rl27hrOzM926dWPnzp107tyZVatW6fnCNMvJQMnDFJ1cNJvQqFEjevfuTVhYGE5OTgB88803HDp0iEOHDll02pcLFy7Qu3dvatWqRUBAANmyZaN48eIUL16cpk2b0rVrV3744YdYc5tpWkpZcoR+eqCTi2YTIiMjsbe35/79+7i4uACwbds2xowZQ6FChSx6rxo1auDs7MyqVatwc3OLdczb25smTZpY9H6aFkUiM0920W0umk349NNP6dWrV3RiCQsL48CBA7EGVFpKREQET58+JXfu3BYvW9MSpNtctPSs9Mov491vZx9/H0i78wmPer844R2LxGRKREQECxYswM/PL3rf6dOnKVmyJHny5LH4/Y4fP06ZMmV0cklj1QfPjHf/4JpFmfjV9HiP7f5jrNnl77tWKsFj9Yr7ml2OJenXYpqWiq5evUqBAgVivf46evSo1WZBzps3L3fu3CEyMlKPW9FSVyZKLvo7S0tzFy5coEKFCrH2nThxgmrVqqWo3K1bt0b3+Hr+/DlgWOVyzZo1PHnyhKdPn6aofE1LKj3ORdNS0fnz5ylfvnysfY6OjtEJITkeP35M586dad68OXPmzKFYsWK4uLjg6urKwYMHOXnyJNmzZ09p6JqWNLrNRdNSz4ULF+KMJSlevDjXrl1LdpnZsmVDRBg4cCAjR47Ex8eH7Nmz4+rqmqqrWWpaNKWnf9G0VHXu3DnKly8f60nlpZde4vr168ku087OjmLFikUnqOfPn1OkSBGdWLQ0EzXORb8W07RUEBERwenTpwkODsbZ2ZmRI0dy+fJl3n///TivypKqS5cutGrVil69euHh4cHcuXMtFLWmJZNSprcMQr8WM9MfvlUSPNax1Cmzy2lb6r1493cdUxVLjN3LfiRbvPuLdIj/KSCywP0Ey2pdY2KCx7Ye/TRpgSXg8uXLFCxYkJMnT9K9e3d27NiBh4cHjx49YvLkySkqe+rUqXTv3p2FCxfSuXNn5syZw4gRIywSt6W1LTc+wWObL05JxUg0a8pITyam6OSixSvLe7lS5T4nTpygatWqHDx4kNdff51t27bRsmVLPvjgA27fvk3hwoWTXbZSiq1bt7J27Vp69erFp59aJiFqlnHsh/jHUXl7e7P7j54pLj+txrIkKIM12Juik4uWpm7cuMGBAwcIDg5m3LhxKKUoUaIEHh4eHD9+nDZt2iSr3IiICEaMGMGBAwc4e/YsRYoUsXDkmpZ0malBXycXLU298847NG3aFB8fHwICAqhduzYiwoABAxg8eDC7d+9O1hLHu3btYvfu3ezfv1+PxNdsRmZKLlZv0BcRexE5LiIbjZ8/EZEAETlh3NolcF0bEbkoIpdFZHyM/UVFZKeI/C4iOY37yomIt7G88yIy39r10izj5MmT3Lx5k+7du3Pw4EHq1KkDQPfu3YmIiMDHxydZ5V65coV69erpxKLZDoVu0LewUcB5IOZ3+Uyl1IyELhARe2AO0BLwBw6LyAal1DlgJDACKAX0AeYB3xrL/N14fWVrVESzvMmTJ3PkyBFCQ0MBWLlyJWAY+/Lw4UNOnDhBq1atklyun59fsp54NM2aMlODvlWfXETEDWgPLEzipbWAy0opX6XUM2Al0Nl4zB6ING5RgxZcMCQhAJRSp1MSt5Z6Tp06xR9//ME///zDRx99RL169QDDtPh//vknX375JZGRSX+XsHv37hRPH6NpFqdH6FvMLOB94MWuR8NFpC9wBHhXKfXgheOuwI0Yn/2B2savZwNLgYdAb+O+mcBOEdkHbAMWK6WCLFSHjOHD/PHudrzkH+9+CCWiZFHrxQM8efKE69evU65cORwcHBg5cmT0MaUU3bp1Y+jQoWYNfHz27BkffPABmzdvRilFSEhIsp54bM3jcvlp1Cn+GYL3bIg7Q3DTVlN5tUdxPv1yapxju7aNs3h8mvky22Jhoqz0jk9EOgDtlFLDRKQJ8J5SqoOIFAbuYsjRnwMuSqkBL1zbA2itlHrT+Pl1oJZSKsFBCiJSFGiD4QmnHOCplAp74ZxBwCCAEiVK1Fi8eLFF6moJISEh5MyZ02rlX7pwK/4DYeHx73dySLQ89/IucfYltQ6hoaFcvXqVihUrxnv8zJkzuLu7R69MmZDw8HCuXLmCg4MDRYsWRURwcHDA3t7e7FiiWPvvIakuXr6d4LFyZeJ20/a5FEi+vE7cfxAW51hZ9/TRY87W/g4AmjZtelQp5ZWSMnLlcVPVGo8yed7fG95P8b1sgTWfXOoDnYwN9lmB3CKyTCnVJ+oEEVkAbIznWn+gWIzPbsDNxG6mlLoJLAIWicgZwAM4+sI584H5AF5eXsqWVhy09gqIX3w4Kd79WRJ4cjH11LLt0Ktx9iW1Dl9++SXnz59n2LBh8R4fOHAgf/zxR4LJJ8rYsWMJDg5m7ty5KZ7exdZWopzwdfxPLQB7NsQdC/Lpl4YnlxVr4s7LtmtbL4vGZi229ndgUZnoycVqyUUp9QHwAUCMJ5c+IuKilIr6NboLcCaeyw8D7iJSEggAevHfK7A4RKQNsEMpFS4iRYD8xus0G7VmzRrmzJnD7t274z1+69YtgoKCTE4Bo5RizZo1bNiwQc8bptm8zPRaLC3mFpsmIqdF5BTQFHgHorsYbwJQSj0HhgNbMfQ0W62UOptIma2AMyJy0njNWKVUoDUroSXf9u3bGTx4MH/++SdlypSJ95y///6b+vXrm1zMK2rBr/Xr12OtV7yaZhEKiFSmtwwiVQZRKqW8AW/j168ncM5NoF2Mz5uATWaWPwYYk9I4tdRx4cIFcubMScuWLalbty7t27dn8ODBsc7x9vamYcOGJsuyt7fnn3/+oWPHjvj6+vLNN9/g7OxsrdA1LWUyTu4wSc+KrKW6ESNGcP36dbZt28a+ffs4cOBArOOBgYGsWrWKnj3Nm1/KxcWF3bt3ExERgZubGzVq1GDt2rXWCF3TUiQzTbmvp3/R4mXvd5Mrc12tVv6FCxeiuxq/OKHkZ599Rr9+/XjppZfMLi9HjhwsXbqUsLAwevTogZ+fn6VDThN3POP/Fg0tGU7xRdPiHuglEGHloNJI2XWfJ3jMp9vHqRhJ8kkGeu1lik4umcT2ff9L0vll1yb8jWwJQ4cOZeTIkYwePTrOsY0bN7Jly5ZklWtvb8/+/fv55ptvUhhh+lXWvUi66RmWqWSwQZKm6NdiWqrz9fXlzJkzDB06NN7jpUuX5urVq0ku9+TJk7Rt2xZPT09KliyZwig1zbIMgyiVyS2j0MlFS3VLlizhtddei3dw5N27dzlx4gQ1a9Y0u7zw8HDefPNNWrduzcsvv8zmzZstGa6mWU6kGZsZEprYN8ZxEZFvjcdPiUj1GMcWici/xvGAVqNfi2mp7ubNm9SoUSPOfn9/fwYMGECPHj0oWLCg2eUtW7aMCxcucPHiRd1TTLNplngyMTGxb5S2gLtxqw3M5b8ptH7CMI3WkhQHkwj95KKlurx58/LgQezp5C5dukT16tVp2LAhc+bMMbusiIgIpkyZwmeffaYTi2bbzJm00rzck9jEvlE6A0uUwQEgj4i4ACil9gAJr29uIfrJRUt1efLkISgoKNa+mzdvUr58eT7+OGm9ftatW0e+fPlo2rSpBSPUNGtQ5vYWKyAiR2J8nm+cuipKYhP7JnaOK5DAJIOWp5OLFi+f7h9brcdY3rx54zTY58uXj/v3zf9lyt/fn8mTJ7NixQrWrFmjp37R0gfzXovdNTFxZXz/2F8s2JxzrEonFy1BPt2tM3YgX758XL9+Pda+AgUKEBAQYNaMuL6+vtStW5c33niDCxcuUKhQIavEaQvOf/5Okq/x9va2fCA2IL2MZUmQstgyx+ZM7JvkyX8tTbe5aKmubdu2nDt3ju3bt0fvc3FxoXv37nh6elK6dOlEe3wNGjSI8ePHM23atAydWLQMyDLLHEdP7Csijhgm9t3wwjkbgL7GXmN1gIcxJgxOFTq5aKkuV65cTJ8+nQ8//DDW/u+//55ly5bh4eHB7dsJr2OSLVs2XF0tP3vA5cuXCQ83rG9z/Phxhg4dyuXLly1+Hy0Ts0CDfkIT+4rIEBEZYjxtE+ALXAYWANHrWojICmA/UE5E/EVkoEXq9gKdXLQ0cebMGWrXjt0G6eDgQN26dcmdOzehoaEJXtuyZctYTz0pde/ePYYPH07dunU5d+4cderUoVWrVmTJkoU6deowf/5804VomhkkMtLkZg6l1CalVFmlVGml1BfGffOUUvOMXyul1NvG45WVUkdiXPuqUspFKeWglHJTSv1ojbrq5KKliVOnTiW4xn3//v2ZOnUqfn5+hISExJlKv2XLlmzcuJHAwJSvqnDt2jUKFCgAwIIFC3BxcWHixIns3buXgQMHUrduXQ4dOpTi+2iaYcp9M7YMQicXLU3069ePH374gZCQkDjHmjVrRrdu3WjQoAGFCxfG0dGRggUL4u7uTsWKFRk8eDD29va4uLhw61bKXiM/fvwYMMzEPGLECO7du8eECROoX78+PXv2pHjx4sycOTNF99A0AMH01C8ZafoX3VvMTFXGxP8DpufAHQle81Gl+FZw1gA6duzI4cOHcXd356OPPmLQoEE4OjpGH//666/5+uuvAQgLC2P//v1MmTKFvXv3cvv2bRwcHABD24iLi0uy46hYsSK7d+9m+/btLF68mMOHD/PRRx/h5eWFm5tbyiqpAVDa+PcYnytjMtkyTBkoeZiin1y0NGFvb89nn33G7du3+e6773B3d2fPnj1xzouIiODVV1+lS5cu7Nu3j5YtWzJt2jRy5syJp6cnbdq0SXEsjRo14vPPPydXrlzY2dnx8ssv68SiWYdleoulCzq5aGkmIiKCLFmy4OPjQ2BgIG3btmX06NE8e/Ys+hw/Pz8OHTpEjhw5+O233/jtt98YOHAgNWrU4PHjxyxcuDANa6BpSaDbXDQtdTg6OhIaGsrrr79OiRIlaNu2LXPnzsXNzY0PP/yQS5cucenSJfLly0exYsVo3rx59LV2dnb079+fCRMmxJlKRtNslaV6i6UHOrloaSpLliz89NNPtGzZEl9fX1asWIGnpydfffUVlSpVokOHDly5ciW6/SWmkiVL0rlzZ9q1axdnqWRNsz1mvBLTr8U0zXLs7Oz47rvvGDBgAIMHD8bLy4tbt26xbt06Bg0axObNm6lbt268186ZM4c333yTHj160KVLFw4cOBDrtZqm2QyFTi6altpEhOHDh3Pq1CmuX7+Oh4cHV69eZdasWTRq1Cjea0JCQnj06BFdunTh7Nmz1KtXj7feeou8efNSu3Ztxo4dS2QGes2gZQC6zUXT0oaLiwvLly9n48aNbN26FXd3dz755BPWrFnDuXPnogdUvvTSS4wbN44yZcpQokQJChUqxJEjR9izZw9nzpzB1dWVAwcO6NmSNZuix7locZz6OqHZaZM+a61mWvXq1dm4cSMHDhxgw4YN/PLLLxw9epSiRYsyZswYhgwZwueff87Ro0eZNWsWPj4+5MqVi0KFCuHs7Ezx4sXZuHGjTi42INONZUlMBkoepujkotm0OnXqUKdOHcDQdfnXX39l4cKFjBkzhsDAQIoXL86wYcP44YcfyJMnDwsWLNAJRbNNSkFEBnrvZYJOLlq6YW9vT48ePejRowcAkZGRiEisZKITi2bT9JOLptk+OzvdZKilMzq5aJqmaRalgEidXDRN0zSLUqB0m4um2ZzWNT9N8NjWwxNTMRJNSwaFbtDXNE3TrEC3uWiapmkWp5OLpmmaZlkZa+4wU3Ry0TRNSw0KyERz3Vl1oICI5BGRtSJyQUTOi0hdEcknIttF5JLxz7wJXNtGRC6KyGURGR9jf1ER2Skiv4tITuO+ciLiLSInjPeZb816aZqmJYueFdlivgG2KKXKA57AeWA8sEMp5Q7sMH6ORUTsgTlAW6Ai8KqIVDQeHgmMABYCfYz7vgVmKqWqKqUqAN9Zr0qapmnJYZz+xdSWQVgtuYhIbqAR8COAUuqZUioI6Az8bDztZ+DleC6vBVxWSvkqpZ4BK43XAdjz3+TUUXN9uAD+URcrpU5bsi6apmkppkCpSJNbRmHNNpdSwB1gsYh4AkeBUUBhpdQtAKXULREpFM+1rsCNGJ/9gdrGr2cDS4GHQG/jvpnAThHZB2wDFhsTWSwiMggYBFCiRAm8vb1TUj+LCgkJsal4ksPadfhgeuMEj1nqvvrvIe2l9/gTpUfoW6zs6sAIpdRBEfmGeF6BJSC+2QcVgFLqGoYnov8OKLVYRLYCbTA84QwWEU+lVNgL580H5gN4eXmpJk2aJKE61uXt7Y0txZMcug62Ib3XIb3Hn6gM1KZiijXbXPwBf6XUQePntRiSzW0RcQEw/vlvAtcWi/HZDbiZ2M2UUjeVUouUUp2B54BHCuPXNE2zHKUMvcVMbRmE1ZKLUioQuCEi5Yy7mgPngA3AG8Z9bwC/x3P5YcBdREqKiCPQy3hdvIw9yxyMXxcB8gMBFqmIpmmapWSi3mLWHucyAlhuTBC+QH8MCW21iAwErgM9wNDFGFiolGqnlHouIsOBrRga8Bcppc4mcp9WwDci8tT4eawxuWmaptkIhYqISOsgUo1Vk4tS6gTgFc+h5vGcexNoF+PzJmCTmfcZA+i1VDVNs116yn1N0zTNKjJQV2NTdHLRNE1LBQpQ+slF07SgoCDOnDmDvb09derUQSS+HvKaZialFwvTtEztwYMHvP/++6xcuZJKlSpx79493Nzc2Lx5M1mzZk3r8LR0LDM16IvKQF3fkkJEjqR1DC8oANxN6yBSSNfBNqT3Othi/HeVUm1SUoCIbMFQN6vfyxZk2uRia0TkiFIqvp516Yaug21I73VI7/FrBtaeFVnTNE3LhHRy0TRN0yxOJxfbkREWONN1sA3pvQ7pPX4N3eaiaZqmWYF+ctE0TdMsTicXTdM0zeJ0ckkmEVkkIv+KyJkY+/KJyHYRuWT8M2+MYx+IyGURuSgirRMoM7Hrp4vIERFpbPz8m4i8HOP4RRH5X4zP60SkaxLq846InBWRMyKyQkSyJhbPC9e2Md7/soiMj7G/qIjsFJHfRSSniOQRkXtiHOouInVFRImIm/Gzs4jcF5Fk/bs0lr9WRC6IyHlj+emtDvYiclxENho/p5v4RaSYiOwy/r8/KyKj0lsdNMvR//OT7ycMK1/GNB7YoZRyB3YYPyMiFTGsSVPJeM33ImIfT5kJXV/eeLwR8Lbx631APePx/EAIUDdGWXWN55gkIq7ASMBLKeWBYZmDXgnF88K19sAcoC1QEXjVWF+MZY4AFgJ9jEtPBwIVjMfrAcej6gHUAQ6q5C8k/g2wRSlVHvAEzqfDOowyxh0lPcX/HHhXKVXBWM7bxjjSUx00C9HJJZmUUnuA+y/s7gz8bPz6Z+DlGPtXKqXClFJ+wGWgVjzFJnS9PRCJYe67qAmu/uG/b6Z6wEagoBiUBJ4kcU2bLEA2EckCZMew8mdC8cRUC7islPJVSj0DVhqvixl3ZCJxz3zhs1kJ8UUikhtD8v0RQCn1zPhDKD3VwQ1oj+GHaJR0E79S6pZS6pjx62AMSdI1PdVBsxydXCyrsFLqFhi+0YBCxv2uwI0Y5/kb95l1vXGhtOzAXmCu8dyjgIcYFmKrB+wHLmL4ba4ehm8+syilAoAZGBZvuwU8VEptS6Q+MSVWt9nAD8AQYJlxX/QTF1AKWMN/a/4kKe4XlALuAIuNr5UWikiOdFaHWcD7GH6IRklP8UcTkRJANeBgeq2DljI6uaSO+KbTTVIfcKXUCKVUDaXUTuPnMOAsUB3jawAMCaYeSfzNzfgOvDNQEigK5BCRPuZeHl+4xhivKaUaKaU6Gn+TBeNvnManq6tKqaeGECQnUAM4ZG7cL8iC4f/FXKVUNeAx8bx+sdU6iEgH4F+l1NGkXmsL8ccKxlDOOmC0UupReqyDlnI6uVjWbRFxATD++a9xvz9QLMZ5bhheO5l7fUL2YXgVlEsp9QA4wH/JJSm/ubUA/JRSd5RS4cCvxjLMicfcugGglLoE5AU6YkiGYHgK62+MISQJcb8Yh79S6qDx81oMySa91KE+0ElErmJ4JdRMRJalo/gxxuiAIbEsV0r9atydruqgWYZOLpa1AXjD+PUbwO8x9vcSESfjb1ruxP+bVULXJ+QfYDBw0vj5FIanmJcwPNWY6zpQR0SyG3vgNMfwvtyceA4D7iJS0viKrpfxusTsx9BwvT/G59Gk4D25sX3phoiUM+5qDpxLL3VQSn2glHJTSpUw3n+nUqpPeokfDI8NGNq8ziulvo5xKN3UQbMgpZTekrEBKzC0T4Rj+K1rIJAfQ2+YS8Y/88U4/yPgCoZ2kbYx9i/E0EuLxK5PIIZCGF4dvBljnzewNRn1+RS4AJwBlgJOCcWD4dXZphjXtgN8jPX7yIx7jQWeAdmMn0sY6/FqCv9OqgJHMCTZ9Rh+s01XdTCW1QTYmNi/CVuMH2hgLOMUcMK4tUtPddCb5TY9/YumaZpmcfq1mKZpmmZxOrlomqZpFqeTi6ZpmmZxOrlomqZpFqeTi6ZpmmZxOrlo6ZqIWHywnIh0ipqVV0RejjGBYlLK8BYRL9NnalrGpJOLpr1AKbVBKTXF+PFlDLP0apqWBDq5aBmCcTbo6WJYj+a0iPQ07m9ifIqIWudleYx1QNoZ9+0VkW/lvzVU+onIbBGpB3QCpovICREpHfOJREQKGKdrQUSyichKETklIquAbGnx/0HTbEWWtA5A0yykK4YR+p5AAeCwiOwxHquGYS2dmximzKkvIkcwzLTbSCnlJyIrXixQKbVPRDZgGC2/FsCYl+IzFAhVSlURkSrAMYvVTNPSIf3komUUDYAVSqkIpdRtYDdQ03jskFLKXxkWjzqBYZqQ8oCvMqyvA4bpfFKiEcbp4JVSpzBMgaJpmZZOLlpGkeAjBRAW4+sIDE/siZ2fmOf8932T9YVjei4lTTPSyUXLKPYAPcWwBn1BDE8Sia3pcQEoZVzUCqBnAucFA7lifL6KYb0QgO4v3P81ABHxAKokJXhNy2h0ctEyit8wvIo6CewE3leJLPOslHoCDAO2iMhe4DbwMJ5TVwJjjatblsawYudQEdmHoW0nylwgp4icwrCapF6sSsvU9KzIWqYlIjmVUiHG3mNzgEtKqZlpHZemZQT6yUXLzN4SkRMYFlZzxtB7TNM0C9BPLpqmaZrF6ScXTdM0zeJ0ctE0TdMsTicXTdM0zeJ0ctE0TdMsTicXTdM0zeL+D8co2r81xMW0AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import cartopy.crs as ccrs\n", "from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\n", "from matplotlib import colorbar, colors\n", "import cartopy.feature as cf\n", "\n", "# Draw coastlines of the Earth\n", "ax = plt.axes(projection=ccrs.PlateCarree())\n", "ax.add_feature(cf.BORDERS)\n", "#ax.coastlines() \n", "ax.add_feature(cf.COASTLINE)\n", "\n", "#adding ejes\n", "xticks=([-120,-100,-80,-60,-40,-20,0])\n", "yticks=([-75,-60,-45,-30,-15,0,15])\n", "ax.set_xticks(xticks, crs=ccrs.PlateCarree())\n", "ax.set_yticks(yticks, crs=ccrs.PlateCarree())\n", "lon_formatter = LongitudeFormatter(zero_direction_label=True,number_format='.1f')\n", "lat_formatter = LatitudeFormatter(number_format='.1f')\n", "ax.xaxis.set_major_formatter(lon_formatter)\n", "ax.yaxis.set_major_formatter(lat_formatter)\n", "\n", "#adding grillas\n", "\n", "ax.gridlines(draw_labels=False, xlocs=xticks, ylocs=yticks)\n", "\n", "data_set.pvalues.where(pvalues < 0.05).plot()\n", "\n", "plt.title('nina-normal 81-10')\n", "plt.xlabel('longitud')\n", "plt.ylabel('latitud')\n", "\n", "\n", "ax.set_aspect('auto', adjustable=None)\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 4 }